THE WEAKLY COMPLEX BORDISM OF LIE GROUPS

BY TED PETRIE

Communicated by William Browder, May 1, 1967

1. Preliminaries. Let \mathcal{K} be the class of compact 1 connected semisimple Lie groups; $\mathscr{K}^{\prime} \subset \mathscr{K}$ is the following set of groups, $\operatorname{Sp}(n), \mathrm{SU}(n)$, $\operatorname{Spin}(n), G_{2}, F_{4}, E_{6}, E_{7}, E_{8}, U_{*}(X)$ the weakly complex bordism of $X[1]$ and Λ the ring $U_{*}(p t)=Z\left[Y_{1}, Y_{2}, \cdots\right] . \Lambda$ is the weakly complex bordism ring defined by Milnor. The generators Y_{i} are weakly complex manifolds of $\operatorname{dim} 2 i$. The bordism class of a weakly complex manifold $M^{2 n}$ is determined by its Milnor numbers [2] $s_{\omega}\left[M^{2 n}\right]$ for ω ranging over all partitions of n. In particular, the generators Y_{i} can be chosen so that $s_{i}\left(Y_{i}\right)=1$ unless $i=p^{k}-1$ for some prime p and in this case $s_{i}\left(Y_{i}\right)=p$; moreover, we assume generators Y_{i} chosen so that its Todd genera are 1.

It is possible and convenient to introduce bordism theories with other coefficient rings than Λ. If Γ is such a ring, $U_{*}(, \Gamma)$ will denote the resulting theory. Briefly here are some examples: Λ_{p} $=Z_{p}\left[Y_{1}, Y_{2}, \cdots\right], \Lambda\left[1 / Y_{p-1}\right]=\operatorname{direct} \lim 1 / Y_{p-1}^{n} \Lambda$ and $\Lambda_{p}\left[1 / Y_{p-1}\right]$ $=\operatorname{direct} \lim 1 / Y_{p-1}^{n} \Lambda_{p} .{ }^{1}$ Let $M=\left\{M_{n}\right\}$ denote the stable object of Milnor [1] and $Z_{p}=S^{1} U_{p} E^{2}$ the space obtained by attaching E^{2} to S^{1} via a map of degree $p . M_{n+2}^{Z_{p}}$ denotes the space of base point preserving maps from Z_{p} to M_{n+2}. Then $U_{k}\left(X, \Lambda_{p}\right)=\operatorname{direct} \lim \Pi_{n+k}\left(X^{+} \wedge M_{n+2}^{2_{p}}\right)$ X^{+}is the disjoint union of X and a point $x_{0} \cdot U_{*}\left(X, \Lambda_{p}\right)$ is the resulting theory. $U_{*}\left(X, \Lambda\left[1 / Y_{p-1}\right]\right)=U_{*}(X) \otimes_{\Delta} \Lambda\left[1 / Y_{p-1}\right]$ and $U_{*}(X$, $\left.\Lambda_{p}\left[1 / Y_{p-1}\right]\right)=U_{*}\left(X, \Lambda_{p}\right) \otimes_{\Lambda_{p} \Lambda_{p}}\left[1 / Y_{p-1}\right]$.

To $K \subset \Re$ there is associated a "generating variety" K_{s} introduced by Bott [4]. Essentially K_{s} is the homogeneous space K / K^{s} where K^{s} is the centralizer of a 1 -dimensional torus $S^{1} \subset K$. The dimension of the center of K^{s} is 1 . The commutator map

$$
S^{1} \times K_{\mathrm{s}} \xrightarrow{[]} K
$$

defined by $[t,[k]]=t k t^{-1} k^{-1}$ for $[k] \in K_{s}, t \in S^{1} \subset K$ is of particular importance.
2. Statement of results. Define $\Lambda(K)=\Lambda$ if $H^{*}(K)$ has no torsion, $=\Lambda\left[1 / Y_{1}\right]$ if $H^{*}(K)$ has only 2 torsion, $=\Lambda\left[1 / Y_{1}, 1 / Y_{2}\right]$ if $H^{*}(K)$ has only 2,3 torsion, $=\Lambda\left[1 / Y_{1}, 1 / Y_{2}, 1 / Y_{4}\right]$ if $H^{*}(K)$ has 2,3 and 5 torsion.

[^0]
[^0]: ${ }^{1}$ E.g., $\Lambda\left[1 / Y_{p-1}\right]$ is the ring obtained from Λ by making Y_{p-1} a unit.

