GLOBAL SOLUTIONS OF CERTAIN HYPERBOLIC SYSTEMS OF QUASI-LINEAR EQUATIONS

BY J. L. JOHNSON¹ AND J. A. SMOLLER²

Communicated by L. Cesari, March 23, 1967

We consider systems of the form

(1)
$$u_t + f(v)_x = 0, \quad v_t + g(u)_x = 0,$$

with initial data $(v(0, x), u(0, x)) = (v_0(x), u_0(x))$. Here u and v are functions of t and $x, t \ge 0, -\infty < x < \infty$, and f and g are C^2 functions of a single real variable. We assume that the system (1) is hyperbolic and genuinely nonlinear in the sense of Lax [4].

THEOREM 1. For each point (v_0, u_0) in the (v-u)-plane, there exist two smooth curves $u = w(v) = w(v, v_0, u_0)$ and $u = s(v) = s(v, v_0, u_0)$, passing through (v_0, u_0) defined for all $v \ge v_0$ with the properties that w'(v) > 0, s'(v) < 0 and each point (v, w(v)) satisfies the Lax conditions for backward rarefaction waves [4], while each point (v, s(v)) satisfies the Lax conditions for forward shock waves [4].

In other words, the Riemann problem for (1) with initial data

$$(v_0(x), u_0(x)) = (v_0, u_0), \qquad x < 0,$$

= $(v_1, w(v_1)), \qquad x > 0$

where $v_1 > v_0$, can be solved by two constant states (v_0, u_0) and $(v_1, w(v_1))$ separated by a backward rarefaction wave. Similarly the Riemann problem for (1) with initial data

$$(v_0(x), u_0(x)) = (v_0, u_0), \qquad x < 0,$$

= $(v_1, s(v_1)), \qquad x > 0$

where $v_1 > v_0$ can be solved by two constant states (v_0, u_0) and $(v_1, s(v_1))$ separated by a forward shock wave.

Fix a point (v_0, u_0) in (v-u)-space and let

$$C(v_0, u_0) = \{(v, u) : v \ge v_0, \quad s(v, v_0, u_0) \le u \le w(v, v_0, u_0)\}$$

THEOREM 2. If $(v_1, u_1) \in C(v_0, u_0)$, then $C(v_1, u_1) \subset C(v_0, u_0)$.

One consequence of Theorem 2 is that the interaction of two forward shocks produces a forward shock and a backward rarefaction

¹ NSF Cooperative Fellow.

² Research supported in part by NSF Research Grant GP 3466.