A NONLINEAR STURM-LIOUVILLE PROBLEM ${ }^{1}$

BY JAY H. WOLKOWISKY

Communicated by E. Isaacson, May 16, 1967

We consider the following nonlinear boundary value problems on the interval $\alpha \leqq x \leqq \beta$:

$$
\begin{gather*}
{\left[p(x) y^{\prime}\right]^{\prime}+q(x) y+\lambda y\left[a(x) \pm h\left(x, y, y^{\prime}\right)\right]=0} \tag{+}\\
y(\alpha)+\gamma_{1} y^{\prime}(\alpha)=0, \quad y(\beta)+\gamma_{2} y^{\prime}(\beta)=0 \tag{2}
\end{gather*}
$$

Here λ is a real constant. We assume that $p(x)>0, a(x)>0, p^{\prime}(x)$, and $q(x)$ are continuous in $\alpha \leqq x \leqq \beta$. In addition in the region

$$
D=\{(x, y, z) \mid \alpha \leqq x \leqq \beta,-\infty<y<\infty,-\infty<z<\infty\}
$$

we require h to satisfy the following conditions:

$$
\begin{gather*}
h(x, y, z) \text { is defined and continuous, } \tag{3}\\
h(x, y, z) \geqq 0, \tag{4}\\
h(x, 0,0)=0, \tag{5}\\
\lim _{c \rightarrow+\infty} h(x, c \xi, c \eta)=\infty \text { uniformly for } \alpha \leqq x \leqq \beta \tag{6}
\end{gather*}
$$

and for all $\xi \neq 0, \eta \neq 0$.
We also assume that γ_{1}, γ_{2}, and $q(x)$ are such that the eigenvalues, λ_{n}, of the "linearized" problem,

$$
\begin{equation*}
\left[p(x) \hat{y}_{n}^{\prime}\right]^{\prime}+q(x) \hat{y}_{n}+\lambda_{n} a(x) \hat{y}_{n}=0 \tag{7}
\end{equation*}
$$

with boundary conditions (2), satisfy

$$
\begin{equation*}
0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<\cdots, \tag{8}
\end{equation*}
$$

with \hat{y}_{k} having $k-1$ zeros in the open interval (α, β).
Previous studies of special cases of equations (1^{+}) and (1^{-}) with boundary conditions (2) have been done by Ljusternik [4], Nehari [5] and Pimbley [6], [7] among others. Similar nonlinear eigenvalue problems for partial differential equations have been treated by Berger [1], Browder [2], and Levinson [3].

We treat the question of the existence and multiplicity of solutions of equations (1^{+}) and (1^{-}) with boundary conditions (2). There are

[^0]
[^0]: ${ }^{1}$ This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, under the sponsorship of the National Science Foundation, Grant NSF-GP-6724.

