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The "Hauptvermutung" is the conjecture that homeomorphic 
(finite) simplicial complexes have isomorphic subdivisions, i.e. homeo
morphic implies piecewise linearly homeomorphic. I t was formulated 
in the first decade of this century and seems to have been inspired by 
the question of the topological invariance of the Betti and torsion 
numbers of a finite simplicial complex. 

The Hauptvermutung is known to be true for simplicial complexes 
of dimension <4, x but there are counterexamples in each dimension 
> 4 (Milnor, 1961). 

The Milnor examples, K and L, have two notable properties: 
(i) K and L are not manifolds, 
(ii) K and L are not locally isomorphic. 
Thus it is natural to restrict the Hauptvermutung to the class of 

piecewise linear w-manifolds, simplicial complexes where each point 
has a neighborhood which is piecewise linearly homeomorphic to 
Euclidean space Rn or Euclidean half space R\. 

We assume that Hz(M, Z) has no 2-torsion.2 

T H E M A I N THEOREM. Let h be a homeomorphism between compact 
PL-manifolds L and M. Then for some integer p 

( L , d L) x ^ ^ X identity ) ( M > d M) x Rp 

is properly homotopic to a PL-homeomorphism. If dim M§:6 and 
7TiM=TidM = 0, then h is homotopic to a PL-homeomorphism. 

There are three steps in the proof of the Main Theorem. 
For simplicity we assume now that M and L are closed simply con

nected PL-manifolds of dim > 4 . 
DEFINITION 1. Let g: L-+M be a homotopy equivalence. A tri

angulation of gis a homotopy of g to a PL-homeomorphism. 

1 1-complexes, obvious. 2-manifolds-Rado, 1926. 2-complexes-Papakyriakopoul-
os, 1943. 3-manifolds-Moise, 1953. 3-complexes-E. Brown, 1964. 

2 We state this condition in terms of Hz instead of H* to suggest a connection with 
the three dimensional Poincare conjecture. 
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