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In a recent paper [4] F. E. Browder and W. V. Petryshyn have 
shown that if a nonexpansive mapping T: X—>X of a Hubert space X 
into itself is asymptotically regular and has a t least one fixed point 
then, for any x in X, a weak limit of a weakly convergent subse
quence of the sequence of successive approximations {Tnx} is a fixed 
point of T. The main object of the present note is to strengthen con
siderably this result by showing that under the same assumptions the 
sequence {Tnx} is necessarily weakly convergent. 

In §1 we recall some basic definitions and prove two simple lemmas. 
In §2 we prove the weak convergence of the sequence {Tnx} and in 
§3 we discuss the possibility of the extension of this result to Banach 
spaces having weakly continuous duality mappings. In §4 an applica
tion of Theorem 2 stated in §3 to a modified sequence of successive 
approximations is given and, in §5, limits of validity of the first key 
lemma of §1 are discussed. 

1. Let C be a convex closed set in a Banach space X. A mapping 
T: C-+X is called nonexpansive if ||7a; —!T;y|| g||#— y§ for any x, y 
in C. Following [4], a mapping T: C—*C is said to be asymptotically 
regular if, for any x in C, the sequence { Tn+1x — Tnx } = {(!— T) (Tnx)} 
tends to zero as n—»<*>. Finally, a mapping T: C—>X is called demi-
closed if its graph in CXX is closed in the topology of a Cartesian 
product induced in CXX by the weak topology in C and the strong 
topology in X\ i.e., if for any sequence {xn} C.C which converges 
weakly to an xQ in C, the strong convergence of the sequence {Txn} 
to a y0 in X implies that Txo = yo. 


