References

 M. G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Prikl. Mat. Meh. 15 (1951), 323-348.
Z. Nehari, Some eigenvalue estimates, J. Analyse Math. 7 (1959), 79-88.

CARNEGIE INSTITUTE OF TECHNOLOGY

WEAK CONVERGENCE OF THE SEQUENCE OF SUCCESSIVE APPROXIMATIONS FOR NONEXPANSIVE MAPPINGS

BY ZDZISŁAW OPIAL

Communicated by F. Browder, September 26, 1966

In a recent paper [4] F. E. Browder and W. V. Petryshyn have shown that if a nonexpansive mapping $T: X \rightarrow X$ of a Hilbert space X into itself is asymptotically regular and has at least one fixed point then, for any x in X, a weak limit of a weakly convergent subsequence of the sequence of successive approximations $\{T^nx\}$ is a fixed point of T. The main object of the present note is to strengthen considerably this result by showing that under the same assumptions the sequence $\{T^nx\}$ is necessarily weakly convergent.

In §1 we recall some basic definitions and prove two simple lemmas. In §2 we prove the weak convergence of the sequence $\{T^nx\}$ and in §3 we discuss the possibility of the extension of this result to Banach spaces having weakly continuous duality mappings. In §4 an application of Theorem 2 stated in §3 to a modified sequence of successive approximations is given and, in §5, limits of validity of the first key lemma of §1 are discussed.

1. Let C be a convex closed set in a Banach space X. A mapping T: $C \to X$ is called *nonexpansive* if $||Tx - Ty|| \leq ||x - y||$ for any x, y in C. Following [4], a mapping T: $C \to C$ is said to be asymptotically regular if, for any x in C, the sequence $\{T^{n+1}x - T^nx\} = \{(I-T)(T^nx)\}$ tends to zero as $n \to \infty$. Finally, a mapping T: $C \to X$ is called *demiclosed* if its graph in $C \times X$ is closed in the topology of a Cartesian product induced in $C \times X$ by the weak topology in C and the strong topology in X; i.e., if for any sequence $\{x_n\} \subset C$ which converges weakly to an x_0 in C, the strong convergence of the sequence $\{Tx_n\}$ to a y_0 in X implies that $Tx_0 = y_0$.