D. E. De Giorgi, Frontiere orientate di misura minima, Sem. di Mat. de Scuola Norm. Sup. Pisa, 1960-1961, 1-56.

FF. H. Federer, and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.
F. W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186.
M. M. Miranda, Sul minimo dell'integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 626-665.

MO. C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.

R1. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92.

R2. \longrightarrow, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1-14.

R3. - On the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1521.

Princeton University

ZERO-SETS IN POLYDISCS ${ }{ }^{1}$

BY WALTER RUDIN

Communicated by Maurice Heins, Feb. 10, 1967
For $N=1,2,3, \cdots$ the polydisc U^{N} consists of all $z=\left(z_{1}, \cdots, z_{N}\right)$ in the space C^{N} of N complex variables whose coordinates satisfy $\left|z_{j}\right|<1$ for $j=1, \cdots, N$. We write U for U^{1}. The distinguished boundary of U^{N} is the torus T^{N} defined by $\left|z_{j}\right|=1(1 \leqq j \leqq N)$. The zero-set of a complex function f defined in U^{N} is the set $Z(f)$ of all $z \in U^{N}$ at which $f(z)=0$. We call a set $E \subset U^{N}$ a zero-set in U^{N} if $E=Z(f)$ for some f which is holomorphic in U^{N}. The main result of this note gives a sufficient condition for zero-sets of bounded functions.

Theorem 1. If E is a zero-set in U^{N} and if no point of T^{N} is a limit point of E, then there is a bounded holomorphic function F in U^{N} such that $Z(F)=E$.
[The term "limit point" refers of course to the topology induced on C^{N} by the euclidean metric.]

For $N=1$ this is utterly trivial since the hypothesis then forces

[^0]
[^0]: ${ }^{1}$ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.

