D. E. De Giorgi, Frontiere orientate di misura minima, Sem. di Mat. de Scuola Norm. Sup. Pisa, 1960-1961, 1-56.

FF. H. Federer, and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.

F. W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186.

M. M. Miranda, Sul minimo dell'integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 626-665.

MO. C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.

R1. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92.

R2. ———, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1-14.

R3. ———, On the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 15–21.

PRINCETON UNIVERSITY

ZERO-SETS IN POLYDISCS¹

BY WALTER RUDIN

Communicated by Maurice Heins, Feb. 10, 1967

For $N = 1, 2, 3, \cdots$ the polydisc U^N consists of all $z = (z_1, \cdots, z_N)$ in the space C^N of N complex variables whose coordinates satisfy $|z_j| < 1$ for $j = 1, \cdots, N$. We write U for U^1 . The distinguished boundary of U^N is the torus T^N defined by $|z_j| = 1$ $(1 \le j \le N)$. The zero-set of a complex function f defined in U^N is the set Z(f) of all $z \in U^N$ at which f(z) = 0. We call a set $E \subset U^N$ a zero-set in U^N if E = Z(f) for some f which is holomorphic in U^N . The main result of this note gives a sufficient condition for zero-sets of bounded functions.

THEOREM 1. If E is a zero-set in U^N and if no point of T^N is a limit point of E, then there is a bounded holomorphic function F in U^N such that Z(F) = E.

[The term "limit point" refers of course to the topology induced on C^{N} by the euclidean metric.]

For N=1 this is utterly trivial since the hypothesis then forces

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.