EXISTENCE AND REGULARITY OF SOLUTIONS TO ELLIPTIC CALCULUS OF VARIATIONS PROBLEMS AMONG SURFACES OF VARYING TOPOLOGICAL TYPE AND SINGULARITY STRUCTURE

BY F. J. ALMGREN, JR.¹

Communicated by Herbert Federer, March 6, 1967

DEFINITIONS AND NOTATION. (1) m and n denote positive integers. (2) H^k denotes Hausdorff k dimensional measure in R^{m+n} for k=m, m-1.

(3) G_m^{m+n} denotes the Grassmann manifold of unoriented *m* plane directions in \mathbb{R}^{m+n} (which can be regarded as the space of all unoriented *m* planes through the origin in \mathbb{R}^{m+n}).

(4) A $C^{(k)}$ integrand [real analytic integrand] is a function [real analytic function] $F: G_m^{m+n} \to R \cap \{t: t > 0\}$ whose partial derivatives up to order k exist and are continuous. Here k denotes either a positive integer or ∞ .²

(5) A surface S is a compact *m*-rectifiable subset of \mathbb{R}^{m+n} . If S is a surface, then, for \mathbb{H}^m almost all $x \in S$, S has an approximate tangent *m* plane direction at *x*, denoted S(x).

(6) The integral of an integrand F over a surface S is defined to be

$$F(S) = \int_{x \in S} F(S(x)) dH^m x.$$

(7) A boundary B is a compact (m-1)-rectifiable subset of \mathbb{R}^{m+n} with $H^{m-1}(B) < \infty$.

(8) **G** denotes the category of all finitely generated abelian groups. If B is a boundary, S is a surface, and $G \in \mathbf{G}$, we denote by $H_{m-1}(B; G)$ and $H_{m-1}(B \cup S; G)$ the m-1 dimensional Vietoris homology groups of **B** and $B \cup S$, respectively, with coefficients in G. If $\sigma \in H_{m-1}(B; G)$ we say that S spans σ if and only if $i_*(\sigma) = 0$ where

$$i_*: H_{m-1}(B; G) \to H_{m-1}(B \cup S; G)$$

is induced by the inclusion $i: B \rightarrow B \cup S$.

¹ This research was supported in part by grant NSF-GP 2425 from the National Science Foundation.

² The existence and regularity results of this paper have recently been extended to apply to integrands $F: \mathbb{R}^{m+n} \times G_m^{m+n} \to \mathbb{R}$ which are elliptic on each tangent space. For such integrands one sets $F(S) = \int F(x, S(x)) d(H^m S) x$.