DUALITY METHODS AND PERTURBATION OF SEMIGROUPS

BY R. T. MOORE¹

Communicated by M. H. Protter, February 15, 1967

1. Introduction. In [5], the author announced several theorems applying the semi-inner product methods of Lumer and Phillips [4] to the perturbation theory of one-parameter holomorphic contraction semigroups on Banach spaces. This note extends the methods to a perturbation theorem of Trotter [9], with proofs, and announces generalizations to locally convex spaces. (See also Kato [3].)

2. Generation theorem, ϕ -sectorial operators. Let \mathfrak{X} be a complex Banach space, and let $[,]: \mathfrak{X} \times \mathfrak{X} \to \mathbb{C}$ be a semi-inner product for \mathfrak{X} , in the sense of [4]: (i) for all $v \in \mathfrak{X}$, $u \to [u, v]$ is a linear functional on \mathfrak{X} , (ii) $[u, u] \ge 0$ for all $u \in \mathfrak{X}$, with $||u|| = [u, u]^{1/2}$, and (iii) |[u, v]| < ||u|| ||v||.

DEFINITION 1. A linear operator A with domain $\mathfrak{D}(A) \subset \mathfrak{X}$ is ϕ -sectorial for $0 \leq \phi \leq \pi/2$ iff for every $u \in \mathfrak{D}(A)$,

(1)
$$\tan \phi |\operatorname{Im}[Au, u]| \leq -\operatorname{Re}[Au, u] \geq 0.$$

Every ϕ_1 -sectorial operator is ϕ_2 -sectorial for all $\phi_2 \leq \phi_1$, and every 0-sectorial operator is dissipative (Re $[Au, u] \leq 0$ as in [4]). If $\phi = \pi/2$, replace the first inequality by Im [Au, u] = 0. If $\Delta_{\phi} = \{z \mid \pi \geq |\arg z| \geq \pi/2 + \phi\}$, and $W(A) = \{[Au, u] \mid u \in \mathfrak{D}(A), ||u|| = 1\}$ is the numerical range of A then A is ϕ -sectorial iff $\Delta_{\phi} \supset \{W(A)\}^-$ (obvious when sketched).

DEFINITION 2. A one-parameter semigroup T is in the family $CH(\phi)$ of holomorphic contraction semigroups on the sector $S_{\phi} = \{z \mid |\arg z| \leq \phi\}$ iff

(a) T is a homomorphism of the additive semigroup of S_{ϕ} into the multiplicative semigroup $\mathfrak{C}(\mathfrak{X})$ of all contraction operators on \mathfrak{X} $(||T(z)|| \leq 1)$,

(b) $z \to T(z)$ is a holomorphic function from $int(S_{\phi})$ to $\mathfrak{C}(\mathfrak{X}) \subset \mathfrak{L}(\mathfrak{X})$, the Banach algebra of bounded operators on \mathfrak{X} (see [2, Chapter 5]), and

(c) (slightly redundant) for all $u \in \mathfrak{X}$, the map $z \to T(z)u$ is continuous from S_{ϕ} into \mathfrak{X} .

¹ Research supported in part by NSF Contract GP 5585.