DUALITY AND ORIENTABILITY IN BORDISM THEORIES

BY DUANE O'NEILL ${ }^{1}$
Communicated by P. E. Conner, Dec. 22, 1966

1. Introduction. A Poincaré duality theorem appears in the literature of bordism theory in several places e.g. [1], [4]. In certain $K(\pi)$-theories, i.e. classical (co)homology theories, the connection between orientability of the tangent bundle of a manifold and this duality is well known [5]. It is interesting to see how this same relationship holds in $M G$-theories and that a simultaneous proof can be given for several different G.

The author wishes to thank Glen E. Bredon for his help during the development of this note.
2. Notation. Throughout this note G_{n} will be one of $O(n), S O(n)$, $U(n)$ or $S U(n)$. We let $\theta=\theta\left(G_{n}\right)$ be the disk bundle associated to the universal G_{n}-bundle. The Thom space, $M G_{n}$, is the total space of θ with the boundary collapsed to a point, the basepoint of $M G_{n}$. The Whitney sum of G-disk bundles induces the maps necessary to define the Thom spectrum $M G$ and the maps giving the (co)homology products. We will denote by $\left(G^{*}()\right) G_{*}()$ the (co)bordism theory associated to MG as in the classical work of G. W. Whitehead [6].

Let $d n$ be the real dimension of the fiber of θ. The inclusion of a fiber into the total space of θ can be thought of as a bundle map covering the inclusion of the basepoint into the classifying space for G_{n}. There is then the associated map of Thom spaces which we denote by $e_{n}: S^{d n}=D^{d n} / \partial D^{d n} \rightarrow M G_{n}$. If $f: S^{q} X \rightarrow M G_{n}$ is a map, then we denote the associated cohomology class by $(f) \in \widetilde{G}^{d n}\left(S^{a} X\right)$. It is easy to prove using the techniques of [6] that $\left(e_{n}\right)$ is the identity element of $\widetilde{G}^{d n}\left(S^{d n}\right)$ and that the identity element

$$
e \in \widetilde{G}^{0}\left(S^{0}\right) \xrightarrow{\Sigma^{d n}}\left(e_{n}\right) \in \widetilde{G}^{d n}\left(S^{d n}\right)
$$

where $\Sigma^{d n}$ is the iterated suspension isomorphism.
Now we consider a closed differentiable n-manifold N^{n} and let $\tau: N \rightarrow B O(2(n+k))$ be the map classifying the stable unoriented tangent bundle of N. There is the sequence

$$
B S U(n+k) \rightarrow B U(n+k) \rightarrow B S O(2(n+k)) \rightarrow B O(2(n+k)) .
$$

[^0]
[^0]: ${ }^{1}$ The author was partially supported by NSF GP-3990 during the preparation of this note.

