LOCAL TIME AT FICTITIOUS STATES

BY DAVID WILLIAMS

Communicated by Henry McKean, Feb. 6, 1967

Theorems 1 and 2 will be contained in a forthcoming paper by the author. Theorem 1 follows from work of Ray [6] and Neveu [4], [5] but a new proof will be presented. Theorem 2 is a consequence of a result already announced in Williams [7]. The terminology and notation are as in Dynkin's book [1].

Let E be a countable set and let $\{p_{ij}(t): i, j \in E; t \ge 0\}$ be a transition function on E with the properties:

$$\sum_{j\in E} p_{ij}(t) = 1; \qquad \lim_{u\downarrow 0} p_{ii}(u) = 1 \quad (i\in E; t\geq 0).$$

THEOREM 1. There exist a complete metric space E^+ in which E is dense and a strong Feller, stochastically continuous transition function P(t) on E^+ such that the following statements are true:

(i)
$$P(t, i, \{j\}) = p_{ij}(t)$$
 $(i, j \in E; t \ge 0);$

(ii)
$$P(t, y, E) = 1 (y \in E^+; t > 0);$$

(iii) every Markov chain on E with transition function $\{p_{ij}(t)\}$ has a right-continuous, strong Markov version taking values in E⁺ and with transition function P(t).

For this version, limits from the left may not always exist in E^+ and the property of quasi-left-continuity may not hold.

Let $\{x(t, \omega): t \ge 0; \omega \in \Omega\}$ be some fixed right-continuous, strong Markov process on E^+ with transition function P(t). Let x be a fixed point of $E^+ \setminus E$ and define

$$T(\omega) = \infty$$
 if $x(t, \omega) \neq x$ for all $t > 0$,
= $\inf\{t: t > 0, x(t, \omega) = x\}$ otherwise.

Suppose that x is such that

$$P_x\big\{T=0\big\}=1;$$

(ii)
$$P_{\mu}\{T<\infty\}>0,$$

 μ being the initial distribution.¹ Then local time at x may always be defined by an equation similar to equation (1) below.

However, in order that the result may be stated in a form with the

¹ In current terminology, x is neither polar nor semipolar.