THE UNIQUENESS OF THE (COMPLETE) NORM TOPOLOGY

BY B. E. JOHNSON

Communicated by Richard Arens, March 7, 1967

In this paper we show that every semisimple Banach algebra over R or C has the uniqueness of norm property, that is we show that if \mathfrak{A} is a Banach algebra with each of the norms || ||, || ||' then these norms define the same topology. This result is deduced from a maximum property of the norm in a primitive Banach algebra (Theorem 1).

In the following F is a field which may be taken throughout as R, the real field, or C, the complex field. If \mathfrak{X} is a normed space then $\mathfrak{B}(\mathfrak{X})$ will denote the space of bounded linear operators on \mathfrak{X} .

LEMMA 1. Let F, G be closed subspaces of the Banach space E such that F+G=E. Then there exists L>0 such that if $x \in E$ then there is an $f \in F$ with

(i) $||f|| \leq L||x||$. (ii) $x - f \in G$.

PROOF. The map $(f, g) \rightarrow f+g$ is a continuous map of $F \oplus G$ onto Eand so is open by the open mapping theorem [1, p. 34]. Thus there is $\delta > 0$ such that if $y \in E$ with $||y|| < \delta$ then there are $f', g' \in G$ with $||f'||, ||g'|| \leq 1$ and f'+g'=y. The result of the lemma then follows if we take $L = \delta^{-1}, y = x||x||^{-1}\delta$ and f = f'L||x||.

THEOREM 1. Let \mathfrak{A} be a Banach algebra over F and let \mathfrak{X} be a normed space over F. Suppose that \mathfrak{X} is a faithful strictly irreducible left \mathfrak{A} module and that the maps $\xi \rightarrow a\xi$ from \mathfrak{X} into \mathfrak{X} are continuous for each $a \in \mathfrak{A}$. Then there exists a constant M such that

$$||a\xi||' \leq M||a|| \cdot ||\xi||'$$

for all $a \in \mathfrak{A}$, $\xi \in \mathfrak{X}$, where $\|\cdot\|$ is the norm in \mathfrak{A} and $\|\cdot\|'$ the norm in \mathfrak{X} .

The theorem asserts that the natural map $\mathfrak{A} \to \mathfrak{G}(\mathfrak{X})$ is continuous. It is a much stronger version of [4, Theorem 2.2.7] but applicable only to primitive algebras. It would be interesting to know how far it can be generalized.

PROOF. If $\xi \in \mathfrak{X}$ and $a \to a\xi(\mathfrak{A} \to \mathfrak{X})$ is continuous then the map $a \to ab$ $\to ab\xi$, being a composition of continuous maps, is continuous. Since \mathfrak{X} is strictly irreducible, if $\xi \neq 0$ we can, by a suitable choice of b, make $b\xi$ any particular vector in \mathfrak{X} and so if $a \to a\xi$ is continuous for one nonzero ξ it is continuous for all ξ in \mathfrak{X} . We shall deduce a contradic-