SOME RESULTS ON LIE *p*-ALGEBRAS

BY GEORGE B. SELIGMAN¹

Communicated February 14, 1967

Let \mathfrak{X} be a Lie *p*-algebra ("restricted Lie algebra") over the field \mathfrak{F} of prime characteristic p [3, Chapter V]. Denote by x^p the image of $x \in L$ under the *p*-power operation, by x^{p^k} the image of *x* under the *k*th iterate of $x \to x^p$, with $x^{p^0} = x$. Let $\langle x \rangle$ be the subalgebra of \mathfrak{X} generated by *x*, i.e., the space of linear combinations of the x^{p^k} , $k=0, 1, 2, \cdots$. Call $x \in \mathfrak{X}$ separable if $x \in \langle x^p \rangle$, nilpotent if $x^{p^k}=0$ for some *k*. Then we have proved the following decomposition theorem, which yields a slightly sharpened form of the Jordan-Chevalley decomposition [2, p. 71] for linear transformations in the case of prime chtracteristic.

THEOREM 1. Let $x \in \mathbb{R}$, a Lie p-algebra of finite dimension over the perfect field \mathfrak{F} . Then there exist elements s, $n \in \langle x \rangle$ with s separable and n nilpotent, such that x = s + n. If $y \in \mathbb{R}$ is separable, $z \in \mathbb{R}$ nilpotent, [yz] = 0, and x = y + z, then y = s and z = n.

A subalgebra \mathfrak{T} of the Lie *p*-algebra \mathfrak{F} is called *toral* if \mathfrak{T} is commutative and if every element of \mathfrak{T} is separable. A subalgebra \mathfrak{N} is called *nil* if every element of \mathfrak{N} is nilpotent. For a Lie *p*-algebra \mathfrak{L} of endomorphisms of a finite-dimensional vector space over an algebraically closed field, to say that \mathfrak{L} is triangulable is to say that [$\mathfrak{R}\mathfrak{L}$] is nil. In this connection we have the following result.

THEOREM 2. Let \mathfrak{L} be a Lie p-algebra over the perfect field \mathfrak{F} , and suppose that $[\mathfrak{L}\mathfrak{L}\mathfrak{L}\mathfrak{R}]$ is nil. Let \mathfrak{N} be the set of nilpotent elements of \mathfrak{L} , and let \mathfrak{T} be any maximal toral subalgebra of \mathfrak{L} . Then \mathfrak{N} is an ideal in \mathfrak{L} , and $\mathfrak{L}=\mathfrak{T}+\mathfrak{N}$. If, moreover, \mathfrak{L} is nilpotent (as ordinary Lie algebra), then \mathfrak{T} is the set of all separable elements of \mathfrak{L} and \mathfrak{T} is central in \mathfrak{L} .

As to conjugacy of maximal toral subalgebras under these conditions we have shown the following:

THEOREM 3. Let \mathfrak{L} be a Lie *p*-algebra over the field \mathfrak{F} . Suppose that the set \mathfrak{N} of nilpotent elements is an ideal in \mathfrak{L} , and let \mathfrak{T}_1 and \mathfrak{T}_2 be toral subalgebras such that $\mathfrak{T}_i + \mathfrak{N} = \mathfrak{L}$. If \mathfrak{N} is commutative, then there is an automorphism σ of the Lie *p*-algebra \mathfrak{L} such that $\mathfrak{X}^{\sigma} = \mathfrak{X}$ for all $\mathfrak{X} \subseteq \mathfrak{N}$, with $\mathfrak{Y}^{\sigma} - \mathfrak{Y} \subseteq \mathfrak{N}$ for all $\mathfrak{Y} \subseteq \mathfrak{L}$, and with $\mathfrak{T}_1^{\sigma} = \mathfrak{T}_2$. In general, there is no

¹ Research supported in part by grants NSF-GP-4017 and NSF-GP-6558, and by a Yale University Senior Faculty Fellowship.