THE INNER DERIVATIONS OF A JORDAN ALGEBRA

BY JOHN R. FAULKNER¹

Communicated by A. D. Mostow, September 21, 1966

A Jordan algebra J is an algebra over a field Φ of characteristic $\neq 2$ with a product $a \cdot b$ satisfying

$$(1) a \cdot b = b \cdot a,$$

(2)
$$(a^{\cdot 2} \cdot b) \cdot a = a^{\cdot 2} \cdot (b \cdot a)$$

where $a^{\cdot 2} = a \cdot a$. The following operator identity is easily derived from (1) and the linearized form of (2)

$$(3) \qquad [a_R[b_Rc_R]] = (a[b_Rc_R])_R \qquad \text{for } a, b, c, \in J$$

where x_R denotes right multiplication by x and [uv] = uv - vu. Letting $D = [b_R c_R]$, we see that (3) implies $(d \cdot a)D - (dD) \cdot a = d \cdot (aD)$ for $a, d \in J$. In other words, D is a derivation of the Jordan algebra J. Hence every mapping of the form $\sum [b_{iR} c_{iR}]$ is a derivation. We shall call such derivations *inner* derivations and denote the set of all inner derivations of J by Inder(J). It is easily shown that Inder(J) is an ideal in the Lie algebra of all derivations of J. We shall show that if the characteristic of Φ is $p \neq 0$, then Inder(J) is a restricted Lie algebra; that is, $D^p \in \text{Inder}(J)$ if $D \in \text{Inder}(J)$.

If \mathfrak{A} is an associative algebra, we denote by \mathfrak{A}^+ the Jordan algebra whose vector space is that of \mathfrak{A} and whose multiplication is $u \cdot v = \frac{1}{2}(uv+vu)$. A Jordan algebra J is *special* if J is a subalgebra of \mathfrak{A}^+ for some associative algebra \mathfrak{A} . Let $\Phi\{x_1, \dots, x_n\}$ be the free associative algebra generated by x_1, \dots, x_n over the field Φ . An element u in $\Phi\{x_1, \dots, x_n\}$ is called *Jordan* if u is in the subalgebra of $\Phi\{x_1, \dots, x_n\}^+$ generated by 1 and x_1, \dots, x_n . We can now state the following

LEMMA. If Φ is of characteristic $p \neq 0, 2$, then there exist Jordan elements $f_i(x, y), i=1, 2$ in $\Phi\{x, y\}$ such that $[xy]^p = [x, f_1(x, y)] + [y, f_2(x, y)]$.

PROOF. We introduce the reversal operation in $\Phi\{x, y\}$ which is an involution $a \rightarrow a^*$ such that $x^* = x$ and $y^* = y$. We say a is reversible if $a^* = a$. Let \mathfrak{M} be the subspace of $\Phi\{x, y\}$ of all elements of the form [xa] + [yb] where a and b are reversible. Since by Cohn's theorem

¹ The author is a National Science Foundation graduate fellow. The author also wishes to thank Professor N. Jacobson, who originally suggested this research.