THE INNER DERIVATIONS OF A JORDAN ALGEBRA

BY JOHN R. FAULKNER ${ }^{1}$

Communicated by A. D. Mostow, September 21, 1966

A Jordan algebra J is an algebra over a field Φ of characteristic $\neq 2$ with a product $a \cdot b$ satisfying

$$
\begin{align*}
a \cdot b & =b \cdot a, \tag{1}\\
\left(a^{2} \cdot b\right) \cdot a & =a^{2} \cdot(b \cdot a) \tag{2}
\end{align*}
$$

where $a^{\cdot 2}=a \cdot a$. The following operator identity is easily derived from (1) and the linearized form of (2)

$$
\begin{equation*}
\left[a_{R}\left[b_{R} c_{R}\right]\right]=\left(a\left[b_{R} c_{R}\right]\right)_{R} \quad \text { for } a, b, c, \in J \tag{3}
\end{equation*}
$$

where x_{R} denotes right multiplication by x and $[u v]=u v-v u$. Letting $D=\left[b_{R} c_{R}\right]$, we see that (3) implies $(d \cdot a) D-(d D) \cdot a=d \cdot(a D)$ for $a, d \in J$. In other words, D is a derivation of the Jordan algebra J. Hence every mapping of the form $\sum\left[b_{i R} c_{i R}\right]$ is a derivation. We shall call such derivations inner derivations and denote the set of all inner derivations of J by $\operatorname{Inder}(J)$. It is easily shown that $\operatorname{Inder}(J)$ is an ideal in the Lie algebra of all derivations of J. We shall show that if the characteristic of Φ is $p \neq 0$, then $\operatorname{Inder}(J)$ is a restricted Lie algebra; that is, $D^{p} \in \operatorname{Inder}(J)$ if $D \in \operatorname{Inder}(J)$.

If \mathfrak{A} is an associative algebra, we denote by \mathfrak{Q}^{+}the Jordan algebra whose vector space is that of \mathfrak{N} and whose multiplication is $u \cdot v$ $=\frac{1}{2}(u v+v u)$. A Jordan algebra J is special if J is a subalgebra of \mathfrak{Q}^{+} for some associative algebra \mathfrak{N}. Let $\Phi\left\{x_{1}, \cdots, x_{n}\right\}$ be the free associative algebra generated by x_{1}, \cdots, x_{n} over the field Φ. An element u in $\Phi\left\{x_{1}, \cdots, x_{n}\right\}$ is called Jordan if u is in the subalgebra of $\Phi\left\{x_{1}, \cdots, x_{n}\right\}+$ generated by 1 and x_{1}, \cdots, x_{n}. We can now state the following

Lemma. If Φ is of characteristic $p \neq 0,2$, then there exist Jordan elements $f_{i}(x, y), i=1,2$ in $\Phi\{x, y\}$ such that $[x y]^{p}=\left[x, f_{1}(x, y)\right]$ $+\left[y, f_{2}(x, y)\right]$.

Proof. We introduce the reversal operation in $\Phi\{x, y\}$ which is an involution $a \rightarrow a^{*}$ such that $x^{*}=x$ and $y^{*}=y$. We say a is reversible if $a^{*}=a$. Let \mathfrak{M} be the subspace of $\Phi\{x, y\}$ of all elements of the form $[x a]+[y b]$ where a and b are reversible. Since by Cohn's theorem

[^0]
[^0]: ${ }^{1}$ The author is a National Science Foundation graduate fellow. The author also wishes to thank Professor N. Jacobson, who originally suggested this research.

