ON CYCLIC VECTORS OF THE BACKWARD SHIFT ${ }^{1}$

BY R. G. DOUGLAS, H. S. SHAPIRO AND A. L. SHIELDS

Communicated by P. R. Halmos, August 1, 1966
The forward shift operator U (that is, multiplication by the independent variable) on the space H^{2} of the unit circle has been much studied. In particular it is known that a vector f is cyclic (that is, $\left\{U^{n} f\right\}(n \geqq 0)$ spans $\left.H^{2}\right)$ if and only if it is an outer function; that every invariant subspace is cyclic; and that two vectors generate the same invariant subspace if and only if they have the same inner factor (see [1, Chapter 5]).

Much less is known about the adjoint operator U^{*} (the backward shift). The only published result seems to be in [2] where it is shown as a by-product of another investigation that a transcendental entire function is a cyclic vector for U^{*}. The problem of describing the cyclic vectors for U^{*} was also posed by D. E. Sarason at the Conference on Analytic Functions, held in Lexington, Kentucky, in May 1965. Both Helson and Sarason have a number of unpublished results on this problem; in particular several of the following theorems were known to them. In this note we indicate some of the results that we have obtained; full details will appear elsewhere.

Let C denote the set of functions in H^{2} of the unit circle that are cyclic vectors of U^{*}; let N denote the set of noncyclic vectors.

Theorem 1. N is a dense vector subspace of H^{2}, and $N+C \subset C$.
Let Q denote the set of functions on the unit circle that are equal almost everywhere to the quotient of two inner functions.

Theorem 2. A function f in H^{2} is in N if and only if signum f^{2} is in Q.

Corollary. $(N \cdot N) \cap H^{2} \subset N ;(C \cdot N) \cap H^{2} \subset C$; if $f \in C$ and $1 / f$ $\in H^{2}$, then $1 / f \in C$.

Here $N \cdot N$ denotes the set of all products $f g$ with $f, g \in N$.
Corollary. A function f in H^{2} is in C if and only if its outer factor is in C.

Corollary. If $f=\sum a_{n} z^{n} \in N$ then $\sum\left(\operatorname{Re} a_{n}\right) z^{n} \in N$.
Theorem 3. If $\int \log |\operatorname{Re} f| d \theta=-\infty$, then $f \in C$.

[^0]
[^0]: ${ }^{1}$ This research was supported in part by the National Science Foundation.

