DELPHIC SEMIGROUPS

BY DAVID G. KENDALL
Communicated by M. Loeve, July 25, 1966

A delphic semigroup shall be a topological commutative semigroup which is Hausdorff and possesses a neutral element and satisfies the three conditions (A-C) below. In formulating these we require some terminology: a triangular array is a system $u(i, j)(i=1,2, \cdots$; $j=1,2, \cdots, i$) of elements of the semigroup; the i th marginal product is the element

$$
u(i, 1) u(i, 2) \cdots u(i, i)
$$

an array is said to converge to an element u when the i th marginal product converges to u; an element is said to be infinitely divisible when it possesses a k th root for each $k \geqq 2$.
(A) There exists a continuous homomorphism Δ from the semigroup into the additive semigroup of nonnegative reals, such that $\Delta(u)=0$ if and only if u is the neutral element.
(B) The set $\left\{u^{\prime}: u^{\prime} \mid u\right\}$ of factors of any given element u is compact.
(C) If a triangular array converges to u, and if the array satisfies the condition $\Delta(u(i, j)) \rightarrow 0$ as $i \rightarrow \infty$ uniformly for $1 \leqq j \leqq i$, then u is infinitely divisible.
As a nontrivial example we mention here only the multiplicative semigroup of positive renewal sequences; for the complete details of this and other examples, as well as for the proofs of the following theorems, reference should be made to [1] and [2].

The first property of a delphic semigroup is that every infinitely divisible element u can be represented as a limit as in (C). Next, it can be shown that the elements of such a semigroup can be partitioned into three exhaustive and mutually exclusive classes; the elements in the first class are indecomposable; those in the second class are decomposable but possess an indecomposable factor; those in the third class are infinitely divisible and possess no indecomposable factor. Finally it can be shown that an arbitrary element of such a semigroup possesses at least one representation in the form

$$
u=v(1) v(2) \cdots w,
$$

where the v 's are indecomposable and w is infinitely divisible and possesses no indecomposable factor. There are not more than countably many v 's; there may be none.

