ORLICZ SPACES OF FINITELY ADDITIVE SET FUNCTIONS, LINEAR OPERATORS, AND MARTINGALES¹

BY J. J. UHL

Communicated by A. Zygmund, July 19, 1966

The purpose of this note is to announce some properties and applications of Orlicz spaces of finitely additive set functions, the V^{Φ} spaces. The V^{Φ} spaces are natural generalizations of the V^{p} spaces (Bochner [2] and Leader [6]).

1. The $V^{\Phi}(\mathfrak{X})$ spaces. Throughout this note Ω is a point set, Σ a field of subsets of Ω , μ a finitely additive extended real valued nonnegative set function defined on Σ ; and $\Sigma_0 \subset \Sigma$ is the ring of sets of finite μ -measure. A partition π is a finite disjoint collection $\{E_n\} \subset \Sigma_0$. The partitions are partially ordered by defining $\pi_1 \leq \pi_2$ whenever each $E_n \in \pi_1$ is a union of members of π_2 . \mathfrak{X} and \mathfrak{Y} are Banach (or B-) spaces with conjugate spaces \mathfrak{X}^* and \mathfrak{Y}^* respectively. Φ is a (nontrivial) Young's function with complementary function Ψ .

DEFINITION. $V^{\Phi}(\Omega, \Sigma, \mu, \mathfrak{X}) = (V^{\Phi}(\mathfrak{X}))$ consists of all finitely additive μ -continuous \mathfrak{X} -valued set functions F on Σ_0 such that for some k > 0,

$$I_{\Phi}(F/k) = \sup_{\pi} \sum_{\pi} \Phi\left(\frac{||F(E_n)||}{k\mu(E_n)}\right) \mu(E_n) \leq 1,$$

where the supremum is taken over all partitions $\pi = \{E_n\}$ and the convention 0/0=0 is observed.

 $V^{\Phi}(\mathfrak{X})$ becomes a *B*-space under each of the equivalent norms

$$N_{\Phi}(F) = \inf\{k > 0: I_{\Phi}(F/k) \leq 1\}$$

or

$$||F||_{\Phi} = \sup \left\{ \sup_{\pi} \sum_{\pi} \frac{||F(E_{v})|| ||G(E_{v})||}{\mu(E_{v})} : G \in V^{\Psi}(\mathfrak{X}^{*}), N_{\Psi}(G) \leq 1 \right\}.$$

Using the integration procedure of [4, Chap. III], one can define the (possibly incomplete) Orlicz spaces $L^{\Phi}(\Omega, \Sigma, \mu, \mathfrak{X}) (= L^{\Phi}(\mathfrak{X}))$ of totally μ -measurable \mathfrak{X} valued functions f satisfying $\int_{\Omega} \Phi(||f||/k) d\mu \leq 1$ for some k > 0. $L^{\Phi}(\mathfrak{X})$ becomes a normed linear space under either of the two equivalent norms $N_{\Phi}(f) = \inf\{k > 0: \int_{\Omega} \Phi(||f||/k) d\mu \leq 1\}$ or, if

¹ The results announced here are contained in the author's doctoral thesis written under the guidance of Professor M. M. Rao at Carnegie Institute of Technology.