ON THE SUMMABILITY OF THE DIFFERENTIATED FOURIER SERIES

BY DANIEL WATERMAN¹

Dedicated to Professor A. Zygmund on the occasion of his 65th birthday Communicated by H. Helson, July 21, 1966

A classical theorem of Fatou [2, p. 99] asserts that if $f \in L(0, 2\pi)$ and the symmetric derivative of f at x_0 ,

$$f'_{\bullet}(x_0) = \lim_{h \to 0} \left[f(x_0 + h) - f(x_0 - h) \right] / 2h$$

exists, then the differentiated Fourier series of f is Abel summable to $f'_{\bullet}(x_0) \operatorname{at} x_0$, or equivalently, if $u(r, x) = a_0/2 + \sum (a_k \cos kx + b_k \sin kx)r^k$ is the associated harmonic function, then

$$\lim_{r\to 1-0} u_x(r, x_0) = f'_s(x_0).$$

Let us suppose that ϕ is a real nonnegative function on an interval to the right of the origin, that $\phi(0) = 0$, and that $\phi(t) = O(t)$ as $t \rightarrow 0$. We say that a set is ϕ -dense at a point p if

$$m(E^{\circ} \cap I)/\phi(m(I)) \rightarrow 0$$

as $m(I) \rightarrow 0$, I an interval containing p. If ϕ is the identity function, this reduces to ordinary metric density. In the case $\phi(t) = t^{\alpha}$, we will say that E is α -dense at p. Proceeding in a manner entirely analogous to the classical definition of approximate limit and derivative, we say that

$$\phi - \lim_{t \to t_0} g(t) = a$$

if for every $\epsilon > 0$, $E_3 = \{t \mid |g(t) - a| < \epsilon\}$ is ϕ -dense at t_0 , and we define the ϕ -approximate symmetric derivative,

$$\phi - f'_{aps}(x_0) = \phi - \lim_{h \to 0} \left[f(x_0 + h) - f(x_0 - h) \right] / 2h.$$

We restrict our attention here to the case of most immediate interest, α -density, and prove the following

THEOREM. Suppose f is in $L(0, 2\pi)$, of period 2π , essentially bounded in a neighborhood of x_0 , and, for some $\alpha \ge 2$, $y = \alpha - f'_{aps}(x_0)$. Then the

¹ Supported by National Science Foundation Grant No. GP-3987.