A RELATION BETWEEN MOMENT GENERATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS

BY D. L. HANSON¹

Communicated by M. Loève, July 20, 1966

Let X_N for $N=0, \pm 1, \cdots$ be independent random variables with finite first absolute moments; let $A_N = \{a_{N,k}: k=0, \pm 1, \cdots\}$; let $||A_N||_{\infty} = \sup_k |a_{N,k}|$ and $||A_N||_p = [\sum_k |a_{N,k}|^p]^{1/p}$ for $1 \le p < \infty$; let $S_N = \sum_k a_{N,k}(X_k - EX_k)$; and let p and q be numbers in $[1, \infty]$ satisfying 1/p+1/q=1.

THEOREM. Suppose there exist positive constants M, γ , and $1 \leq p \leq 2$ such that for $0 < x < \infty$ and all values of k

(1)
$$P\{ |X_k - EX_k| \ge x \} \le \int_x^\infty M \exp(-\gamma t^p) dt.$$

Suppose $||A_N||_2$ and $||A_N||_q$ are finite for all N. Then

$$T_N = \lim_{\alpha \to -\infty; \beta \to \infty} \sum_{k=\alpha}^{\beta} a_{N,k} (X_k - EX_k)$$

exists as an almost sure limit for each N and there exist positive constants C_1 and C_2 such that for every $\epsilon > 0$

$$P\{T_N \ge \epsilon\} \le \exp\left[-\min\left\{C_1\left(\frac{\epsilon}{\|A_N\|_2}\right)^2, C_2\left(\frac{\epsilon}{\|A_N\|_q}\right)^p\right\}\right].$$

The constants C_1 and C_2 which are obtained depend only on M, γ , and p. They do not depend in any other way on the distribution of the X_k 's and they do not depend on the coefficient sequences A_N .

When p=1 the condition (1) is equivalent to the existence of constants T>0 and C>0 such that $E \exp(tX_k) \leq \exp(Ct^2)$ for all k and all |t| < T; when 1 it is equivalent to the existence of a constant <math>C>0 such that $E \exp(tX_k) \leq \exp[C(t^2 + |t|^q)]$ for all k and t.

If
$$p = 1$$
 and $a_{N,k} = 1/N$ for $k = 1, \dots, N$,
= 0 otherwise,

¹ Research partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr AF-AFOSR-746-65.