MULTIPLICATION IN GROTHENDIECK RINGS OF INTEGRAL GROUP RINGS

BY D. L. STANCL
Communicated by I. Reiner, June 24, 1966

1. Introduction. Let G be a finite group, Z the ring of rational integers, and form the Grothendieck ring $K^{0}(Z G)$ of the integral group ring $Z G$. Swan [4] has described multiplication in $K^{0}(Z G)$ when G is cyclic of prime power order. The purpose of this note is to present results which describe multiplication in $K^{0}(Z G)$ when G is cyclic or elementary abelian. Full details will appear elsewhere.

Let Q denote the rational field, and recall that the elements of $K^{0}(Q G)$ are Z-linear combinations of symbols $\left[M^{*}\right]$, where M^{*} ranges over all finitely-generated left $Q G$-modules, and similarly for $K^{0}(Z G)$. We define a ring epimorphism $\theta: K^{0}(Z G) \rightarrow K^{0}(Q G)$ by $\theta[M]$ $=\left[Q \otimes_{z} M\right]$, and call any linear mapping $f: K^{0}(Q G) \rightarrow K^{0}(Z G)$ such that $\theta f=1$ a lifting $m a p$ for $K^{0}(Z G)$. Since the Jordan-Hölder Theorem holds for $Q G$-modules, $K^{0}(Q G)$ is the free abelian group with basis $\left\{\left[M_{i}^{*}\right]: 1 \leqq i \leqq m\right\}$, where $\left\{M_{i}^{*}: 1 \leqq i \leqq m\right\}$ is a full set of nonisomorphic irreducible $Q G$-modules. Swan [4] has shown that to describe multiplication in $K^{0}(Z G)$ it suffices to describe the products $f\left[M_{i}^{*}\right] \cdot f\left[M_{j}^{*}\right]$, for $1 \leqq i, j \leqq m$, and $f\left[M_{i}^{*}\right] x$, for $1 \leqq i \leqq m$ and $x \in \operatorname{ker} \theta$.
2. Statement of results. Let G be cyclic of order n with generator g. For each s dividing n, ζ_{s} will denote a primitive s th root of unity, and Z_{s} will denote the $Z G$-module $Z\left[\zeta_{s}\right.$] on which g acts as ζ_{s}. Similarly, Q_{s} will denote the $Q G$-module $Q\left(\zeta_{s}\right)$. Then $K^{0}(Q G)$ is the free abelian group with basis $\left\{\left[Q_{s}\right]: s \mid n\right\}$, and $f: K^{0}(Q G) \rightarrow K^{0}(Z G)$ by $f\left[Q_{s}\right]=\left[Z_{s}\right]$ is a lifting map. Swan [4] has shown that f is a ring homomorphism. Also, for each s dividing n, G_{s} will denote the quotient group of G of order s, and if $t \mid s, N_{s / t}$ will denote the norm from Q_{s} to Q_{t}. By the results of Heller and Reiner [2],

$$
\operatorname{ker} \theta=\left\{\sum_{s \mid n}\left(\left[A_{s}\right]-\left[Z_{s}\right]\right): A_{s}=Z_{s} \text {-ideal in } Q_{s}\right\}
$$

Theorem 1. Multiplication in $K^{0}(Z G)$ is given by the formula

$$
\left[Z G_{r}\right]\left(\left[A_{s}\right]-\left[Z_{s}\right]\right)=\sum_{d}\left(\left[N_{s / s^{\prime}}\left(A_{s}\right) Z_{d}\right]-\left[Z_{d}\right]\right),
$$

for all r, s dividing n, where $s^{\prime}=s /(r, s)$ and d ranges over all divisors of $[r, s]$ such that $\left([r, s] / d, s^{\prime}\right)=1$.

