SUMS OF ULTRAFILTERS

BY ZDENĚK FROLfK

Communicated by E. Hewitt, June 6, 1966
The main result, an estimate of the cardinality of the set of all ultrafilters producing a given type of ultrafilter (see definition 1.4 and Theorem C in 1.4), is illustrated by a proof of nonhomogeneity of $\beta N-N$ (see 2.1) without using the continuum hypothesis, and by an exhibition of the following two examples.

Theorem A. For each positive integer n there exists a space X such that X^{n} is countably compact but X^{n+1} is not.

Theorem B. There exists a space Y such that each finite product Y^{n} is countably compact but $Y^{N_{0}}$ is not.

By a space we mean a separated uniformizable topological space; and Z^{m} stands for the product of any constant family $\{Z \mid a \in A\}$ such that the cardinal of A is m.

In our examples the spaces X^{n+1} in A and $Y^{N_{0}}$ in B are not pseudocompact. An exhibition of A and B with countably compact replaced by pseudocompact is done in [3]; it does not require Theorem C. Trivial examples of spaces with properties in A and B do not seem to be available.

Observe the proof of A and B reduces to the following.
Theorem A^{\prime}. For each positive integer n there exist spaces $X(1), \cdots$, $X(n+1)$ such that the product of any family $\left\{X\left(k_{j}\right) \mid i=1, \cdots, n\right\}$ is countably compact but the product $\{X(j) \mid j \leqq n+1\}$ is not countably compact.

Theorem B^{\prime}. There exists a sequence $\{Y(j)\}$ of spaces such that the product of any finite subfamily is countably compact but the product of $\{Y(j)\}$ is not.

Indeed, for an X in A take the sum of spaces $X(j)$ with properties in A^{\prime}. For Y in B take a one-point countable-compactification of the sum of a sequence $\{Y(j)\}$ with properties in B^{\prime}; then the product of $\{(j) \times Y(j)\}$ is a closed subspace of Y.

Remark. In addition, we shall exhibit $\{Y(j)\}$ such that the product of any proper subfamily (e.g. $\{Y(j) \mid j \geqq 2\}$) is countably compact. On the other hand there exists a sequence $\{Y(j)\}$ such that the product of a subfamily is countably compact if and only if the subfamily is finite.

