LINEAR FUNCTIONALS ON THE SPACE OF QUASI-CONTINUOUS FUNCTIONS

BY JAMES A. RENEKE

Communicated by A. Zygmund, June 24, 1966

Suppose that S is a number interval and J is a nondecreasing sequence of closed and compact number intervals with limit S. Let G denote the space of all quasi-continuous functions from S into the plane. If A is a set then 1_A will denote the characteristic function of A. Let Ω denote the collection of subsets of S to which A belongs only in case $1_A G$ is contained in G. J has final set in Ω . For each integer n let $|\cdot|_n$ denote the norm for $1_{J(n)}G$ defined by $|f|_n = 1.u.b. |f(x)|$ for all x in J(n). Let $|\cdot|$ denote the function from G to the nonnegative numbers defined by

$$|f| = \sum_{p=1}^{\infty} 2^{-p} |\mathbf{1}_{J(p)}f|_p / (1 + |\mathbf{1}_{J(p)}f|_p).$$

G is complete in the topology generated by the metric $\rho(f, g) = |f-g|$ and $1_{J(n)}G$ is a closed linear subspace of G for each positive integer *n*. A linear functional F on G is continuous only in case the restriction of F to $1_{J(n)}G$ is continuous with respect to $|\cdot|_n$ for each positive integer *n*.

THEOREM. For each continuous linear functional F on G there is an ordered triple $\{U, V, W\}$ of order additive functions from $S \times S$ to the plane such that if A is in Ω , A is contained in [a, b], and a is not in A, then

$$F(f) = (L) \int_{a}^{b} fU + (I) \int_{a}^{b} f(-U + V - W) + (R) \int_{a}^{b} fW$$

for each f in $1_{A}G$. Furthermore, if u is an increasing function from [a, b] such that

(1) U(s-, s) = V(s-, s) = W(s-, s) = 0, when s is in (a, b] and u(s) = u(s-),

and

(2) U(s, s+) = V(s, s+) = W(s, s+) = 0, when s is in [a, b) and u(s) = u(s+),

and v denotes the function from [a, b] defined by