CYCLOTOMIC IDEALS IN GROUP RINGS

BY S. BACHMUTH AND H. Y. MOCHIZUKI

Communicated by Walter Feit, May 5, 1966

Let G be a group of exponent n and Z(G) the integral group ring of G. We call the ideal of Z(G), which is generated by all elements of the form $1+u+u^2+\cdots+u^{n-1}$ where u runs through all elements of the group G (including 1), the cyclotomic (or Burnside) ideal $\Im(n)$. The motivation for the study of these ideals is the close connection of $\Im(n)$ with the Burnside group $F/R'F^n$ where G=F/R is represented as a factor group of a free group, R' is the commutator subgroup of R, and F^n is the group generated by nth powers of elements of F. Specifically, one considers $RF^n/R'F^n$ as a module over $Z_n(F/RF^n)$ coupled with the observation that for u in $RF^n/R'F^n$ and x in F/RF^n ,

$$u^{1+x+\cdots+x^{n-1}} = u(xux^{-1})(x^2ux^{-2})\cdot \cdot \cdot (x^{n-1}ux^{-n+1}) = (ux)^n.$$

We hope this announcement helps to initiate a study of the quotient rings $Z(G)/\Im(n)$. We restrict ourselves to the commutative case, where G is a direct product of two cyclic groups of order n. We denote by Σ the augmentation ideal of Z(G); i.e., the ideal generated by (1-g) for all g in G. Throughout, the letter F will always mean a free group of rank 2.

THEOREM 1.

- (i) $\Sigma^{p-1} = \Im(p)$, $(\Sigma^{p-2} \oplus \Im(p))$, for any prime p.
- (i) i $\Sigma^4 \subseteq \Im(4)$, $(\Sigma^3 \oplus \Im(4))$.
- (iii) $\Sigma^{12}\subseteq\Im(9)$, $(\Sigma^{11}\,\mathcal{T}\Im(9))$.

The application to the Burnside groups is the following:

COROLLARY 1.

- (i) $F/F''F^p$ has nilpotency class p-1.
- (ii) $F/F''F^4$ has nilpotency class 4 or 5.
- (iii) $F/F''F^9$ has nilpotency class 12 or 13.

Part (i) of Corollary 1 is due to Meier-Wunderli [1], and Part (i) of Theorem 1 follows easily from his results. In general, our aim is to establish bounds on the nilpotency class of $F/F''F^n$ in the case where $n = p^o$ is a power of a prime, and in the case where n is a composite, to determine where the lower central series becomes stationary. Since we can show the latter is determined once one knows the nilpotency class of $F/F''F^p_i^s$ for each prime power p_i^s dividing n, we will restrict