DECOMPOSITION OF PRODUCTS OF MODULAR REPRESENTATIONS¹

BY THOMAS RALLEY

Communicated by I. Reiner, June 24, 1966

Let G be a cyclic group of order p^N with generator g, p a prime, and let KG be the group algebra over a field K of characteristic p. Green [1] and Srinivasan [3] gave formulas for the decomposition of tensor products of KG-modules into direct sums of indecomposables. We outline here an alternative procedure, based on the theory of elementary divisors, for obtaining these formulas.

For each r, $1 \le r \le p^N$, there is an indecomposable KG-module of dimension r. It affords a matrix representation $g \to V_r = E_r + H_r$, where E_r is the $r \times r$ identity matrix and H_r is the $r \times r$ matrix with ones along the superdiagonal and zeros elsewhere. The characteristic matrix $V_r - \lambda E_r$ has exactly one elementary divisor, $(1 - \lambda)^r$. Thus the decomposition of a KG-module can be determined from knowledge of the elementary divisors of the matrix representation which it affords.

LEMMA ([2]). The elementary divisors of $V_m \otimes V_n - \lambda E_{mn}$ are the same as those of $M = [H_m + (1 - \lambda)E_m]^n$.

Put $t=1-\lambda$. Expansion by the binomial theorem shows that M is an upper triangular matrix with (i, j) entry $a_{ij} = C(n, j-i)t^{n-j+i}$, $1 \le i, j \le m$, where the binomial coefficient C(n, j-i) is to be regarded as an element of K.

To describe the elementary divisors, or what is the same, the invariant factors of M, we introduce the following notation. For $1 \le r$ $\le m$, let c(r) denote the largest integer l such that the submatrix of M consisting of the entries from rows 1 through r and columns l through m, has rank r. For example, c(1) is the column index of the last nonzero entry of the first row of M.

We now indicate a procedure for finding the invariant factors of M. Subtract appropriate multiples of column c(1) from columns preceding it so that all entries of the first row except $a_{1,c(1)}$ become 0. Subtract suitable multiples of the resulting first row from the rows below it so that all entries $(i, c(1)), 2 \le i \le m$, become 0. If c(1) < m, repeat the process with columns c(1)+1 through m. These elementary operations transform M into a matrix

¹ This research was supported in part by NSF Grant No. GP 4013.