DECOMPOSITION OF PRODUCTS OF MODULAR REPRESENTATIONS ${ }^{1}$

BY THOMAS RALLEY

Communicated by I. Reiner, June 24, 1966
Let G be a cyclic group of order p^{N} with generator g, p a prime, and let $K G$ be the group algebra over a field K of characteristic p. Green [1] and Srinivasan [3] gave formulas for the decomposition of tensor products of $K G$-modules into direct sums of indecomposables. We outline here an alternative procedure, based on the theory of elementary divisors, for obtaining these formulas.

For each $r, 1 \leqq r \leqq p^{N}$, there is an indecomposable $K G$-module of dimension r. It affords a matrix representation $g \rightarrow V_{r}=E_{r}+H_{r}$, where E_{r} is the $r \times r$ identity matrix and H_{r} is the $r \times r$ matrix with ones along the superdiagonal and zeros elsewhere. The characteristic matrix $V_{r}-\lambda E_{r}$ has exactly one elementary divisor, $(1-\lambda)^{r}$. Thus the decomposition of a $K G$-module can be determined from knowledge of the elementary divisors of the matrix representation which it affords.

Lemma ([2]). The elementary divisors of $V_{m} \otimes V_{n}-\lambda E_{m n}$ are the same as those of $M=\left[H_{m}+(1-\lambda) E_{m}\right]^{n}$.

Put $t=1-\lambda$. Expansion by the binomial theorem shows that M is an upper triangular matrix with (i, j) entry $a_{i j}=C(n, j-i) t^{n-j+i}$, $1 \leqq i, j \leqq m$, where the binomial coefficient $C(n, j-i)$ is to be regarded as an element of K.

To describe the elementary divisors, or what is the same, the invariant factors of M, we introduce the following notation. For $1 \leqq r$ $\leqq m$, let $c(r)$ denote the largest integer l such that the submatrix of M consisting of the entries from rows 1 through r and columns l through m, has rank r. For example, $c(1)$ is the column index of the last nonzero entry of the first row of M.

We now indicate a procedure for finding the invariant factors of M. Subtract appropriate multiples of column $c(1)$ from columns preceding it so that all entries of the first row except $a_{1, c(1)}$ become 0 . Subtract suitable multiples of the resulting first row from the rows below it so that all entries $(i, c(1)), 2 \leqq i \leqq m$, become 0 . If $c(1)<m$, repeat the process with columns $c(1)+1$ through m. These elementary operations transform M into a matrix

[^0]
[^0]: ${ }^{1}$ This research was supported in part by NSF Grant No. GP 4013.

