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The object of this note is to demonstrate the applicability of the 
methods of nonlinear functional analysis in the investigation of a com­
plex physical problem. In 1910 T. von Karman [9] introduced a sys­
tem of 2 fourth order elliptic quasilinear partial differential equations 
which can be used to describe the large deflections and stresses pro­
duced in a thin elastic plate subjected to compressive forces along its 
edge. The most interesting phenomenon associated with this non­
linear situation is the appearance of "buckling," i.e. the plate may 
deflect out of its plane when these forces reach a certain magnitude. 
Mathematically this circumstance is expressed by the multiplicity of 
solutions of the boundary value problem associated with von Kar-
man's equations. With the aid of the modern theory of linear elliptic 
partial differential equations together with functional analysis on a 
suitably chosen Hilbert function space, we are able to use the structural 
pattern of the nonlinearity implicit in Karman1 s equations to obtain a 
qualitative nonuniqueness theory for this problem. 

Among the previous studies of buckling of plates are those of 
Friedrichs and Stoker [5] and Keller, Keller and Reiss [ó], who study 
only radially symmetric solutions of circular plates. Numerical 
studies for rectangular plates have been given by Bauer and Reiss 
[2] among others. Karmand equations for general domains have 
been studied by Fife [4] and Morosov [8] in other connections. The 
authors are grateful to Professors S. Agmon and W. Littman for help­
ful suggestions. This research was partially supported by the National 
Science Foundation Grant No. GP-3904 and the Air Force Office of 
Scientific Research Grant No. 883-65. 

1. Classical and generalized solutions (for a clamped plate). Let 
0 be a bounded domain in R2 with boundary <9Q consisting of a finite 
number of arcs on each of which a tangent rotates continuously. De­
fined over 0, we consider the following system of partial differential 
equations and boundary conditions: 

A2/ = - [w, w], 

A2w = \[F, w] + [ƒ, w], 

(2) w = wx = wy = ƒ = fx = f y = 0 on dû 
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