ROYDEN'S MAP BETWEEN RIEMANN SURFACES¹

BY MITSURU NAKAI

Communicated by A. E. Taylor, June 10, 1966

Let R and R_j (j=1, 2) be Riemann surfaces, either open or closed. We denote by M(R) Royden's algebra associated with R, and by R^* Royden's compactification of R (see [5], [6], and [7]). We have seen in [5] that every algebraic isomorphism of $M(R_1)$ onto $M(R_2)$ induces (and is induced by) a quasiconformal mapping of R_1 onto R_2 . In other words, the algebraic structure of M(R) characterizes the quasiconformal structure of R. In this connection there naturally arises the following question: What can we say about the topological structure of R^* ? This question leads us to a new notion, Royden's map, which seems to be of considerable function-theoretic interest.

Here we report, without proofs, some of the properties of Royden's maps. Details will be published elsewhere.

1. Moduli of A-sets. An open subset G of R is called *normal* if for any point z in ∂G there exists a parametric disk U, with center z, such that $\partial G \cap U$ is a simple arc connecting two boundary points of U.

An A-set A is a pair (G_1, G_2) of two nonempty normal open sets G_1 and G_2 in R with $G_1 \supset \overline{G}_2$. An annulus in a parametric disk is an example of an A-set.

We associate with an A-set $A = (G_1, G_2)$ a family $\{\phi\}$ of functions ϕ which are continuous on $\overline{G}_1 - G_2$, of class C^1 in $G_1 - \overline{G}_2$, and have boundary values $\phi | \partial G_j = j$ (j=1, 2). The modulus of A, denoted mod A, is the number in $[0, \infty)$ given by

(1) $\mod A = 2\pi/\inf_{\phi \in \{\phi\}} D(\phi),$

where $D(\phi)$ is the Dirichlet integral of ϕ taken over $G_1 - \overline{G}_2$. If A is an annulus in a parametric disk, then this definition coincides with the usual one.

2. Royden's map. A topological mapping T of R_1 onto R_2 carries an A-set $A = (G_1, G_2)$ on R_1 to the A-set $TA = (TG_1, TG_2)$ on R_2 . We call T a Royden's map if there exists a constant $K(A) \ge 1$ such that

(2)
$$K(A)^{-1} \mod A \leq \mod TA \leq K(A) \mod A$$
,

for every A-set A on R_1 . Here K(A) may depend on A. If we can find

¹ The work was sponsored by the U. S. Army Research Office—Durham, Grant DA-AROD-31-124-G 742, University of California. Los Angeles.