THE INDEPENDENCE OF GAME THEORY OF UTILITY THEORY

BY BEZALEL PELEG

Communicated by J. Milnor, April 25, 1966

A theory of noncooperative and cooperative games, that parallels the classical theory [1], [2] but makes no use of utility theory, is outlined in this note.

1. Games in normal form. The following definition seems suitable for our purpose (see, e.g., $[3, \S 5]$).

DEFINITION 1.1. An *n*-person game (in normal form) is a system $G = \{N; S^1, \dots, S^n; X^1, \dots, X^n; R^1, \dots, R^n; H^1, \dots, H^n\},$ where:

(1.1) N is a set of n members (the players of G), and for each $i \in N$:

- (1.2) S^i is a nonempty set (the set of *strategies* of player *i*).
- (1.3) X^i is a nonempty set (the set of outcomes for player i).
- (1.4) $R^i \subset X^i \times X^i$ (the preference relation of player i).
- (1.5) H^i is a function whose domain is the set $S = S^1 \times \cdots \times S^n$ and whose range is X^i (the *payoff function* of player *i*).

If
$$\bar{s} \in S$$
, $\bar{s} = (\bar{s}^1, \cdots, \bar{s}^n)$, and $s^i \in S^i$, we denote:

(1.6)
$$\bar{s} \mid s^i = (\bar{s}^1, \cdots, \bar{s}^{i-1}, s^i, \bar{s}^{i+1}, \cdots, \bar{s}^n)$$

DEFINITION 1.2. Let $G = \{N; S^1, \dots, S^n; X^1, \dots, X^n; R^1, \dots, R^n; H^1, \dots, H^n\}$ be an *n*-person game. $\bar{s} \in S$ is an *equilibrium point* for G if for each $i \in N$:

(1.7)
$$(H^i(\bar{s} \mid s^i), H^i(\bar{s})) \notin R^i$$
, for all $s^i \in S^i$.

This is Nash's definition [2] adjusted to our case.

2. Finite, noncooperative games. Let

$$G = \{N; S^1, \cdots, S^n; X^1, \cdots, X^n; R^1, \cdots, R^n; H^1, \cdots, H^n\}$$

be an *n*-person game. G is finite if S^i is finite for all $i \in N$. The mixed extension of G^1 is the *n*-person game

$$\hat{G} = \{\hat{N}; \hat{S}^1, \cdots, \hat{S}^n; \hat{X}^1, \cdots, \hat{X}^n; \hat{R}^1, \cdots, \hat{R}^n; \hat{H}^1, \cdots, \hat{H}^n\},$$

where:

¹ In what follows we assume that G is finite.