STABLE COMPLEX MANIFOLDS ${ }^{1}$

BY ALLAN BRENDER ${ }^{2}$

Communicated by E. Spanier, July 14, 1966

1. T. Van de Ven [3] has recently shown that there exist real 4dimensional manifolds which admit almost complex structures but admit no complex structures, e.g. $S^{1} \times S^{3} \# S^{1} \times S^{3} \# C P(2)$. The purpose of this note is to show that this is an unstable phenomenon.

Let M^{n} be a $C^{\infty} n$-dimensional real manifold without boundary and let τ_{M} be its tangent bundle. R^{k} is real Euclidean k-space and C^{k} is complex k-space.

Definition 1. M^{n} admits a stable complex structure if $M^{n} \times R^{k}$ can be given the structure of a complex analytic manifold for some $k \geqq 0$, $n \equiv k(\bmod 2)$.

Let ξ^{m} be an m-plane bundle over M^{n}.
Definition 2. A stable complex structure for ξ^{m} is a reduction of the group of $\xi^{m} \oplus \epsilon^{k}$ to $U((m+k) / 2)$ for some $k \geqq 0, m \equiv k(\bmod 2)$.

Definition 3. A stable almost complex structure for M^{n} is a stable complex structure for τ_{M}.

Proposition. M^{n} admits a stable complex structure if and only if it admits a stable almost complex structure.
2. It is clear that a stable complex structure carries with it a stable almost complex structure. We show the converse is true.

We can assume M^{n} is a real analytic manifold. There exists a complex n-dimensional manifold N_{c}^{n} (of real dimension $2 n$) and a real analytic embedding $i: M^{n} \subset N_{C}^{n}$ [4]. Regarding N as a real manifold, it is easy to see from the construction of [4] that $\nu(i)$, the normal bundle of the embedding, is equivalent to τ_{M}; i.e., $\tau_{N} \mid M \approx \tau_{M} \oplus \tau_{M}$. Let $U \subset N$ be a tubular neighborhood of M in N and let $r: U \rightarrow M$ be the bundle projection (U is identified with the total space of $\nu(i)$). One can construct an open neighborhood, V, of M in $U(M \subset V \subset U \subset N)$ which is a domain of holomorphy [2]. Let $r: V \rightarrow M$ be the restriction of $r: U \rightarrow M$.

Let $\nu^{2 n+1}$ be the stable normal bundle to $M^{n} . \tau_{M} \oplus \nu^{2 n+1} \approx \epsilon^{3 n+1}$. τ_{M} admits a stable complex structure if and only if ν does. Assume now that there is a bundle σ over M with fiber C^{m} and group $U(m)$

[^0]
[^0]: ${ }^{1}$ Research supported in part by the National Science Foundation. These results are contained in the author's doctoral dissertation submitted to the University of California, Berkeley.
 ${ }^{2}$ The author wishes to thank Professors Phillip Griffiths and Morris Hirsch for several very helpful conversations.

