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The purpose of this paper is to show that certain known results 
concerning separable spaces hold also for nonseparable reflexive 
Banach spaces. Our main result (Theorem 1) proves a special case 
of a conjecture of H. H. Corson and the author [ l] while the corollary 
proves some conjectures of V. Klee (see for example [2]). In order 
to state Theorem 1 we introduce the following notation : Let T be a 
set; by c0(T) we denote the Banach space of scalar valued functions ƒ 
on T, such that {7; | / ( Y ) | > e } is finite for every e > 0 , with the sup 
norm. 

THEOREM 1. Let X be a reflexive Banach space. Then there is a one to 
one bounded linear operator from X into Co(T) for a suitable set T. 

This theorem was proved in [3] for spaces X which have the metric 
approximation property (M.A.P.) introduced by Grothendieck. We 
shall show here how to modify the proof in [3] so that it will not de­
pend on the assumption concerning the M.A.P. As noted in [3] the 
following corollary is an easy consequence of Theorem 1 and known 
results. 

COROLLARY 1. Let X be a reflexive Banach space. Then 
(i) X has an equivalent strictly convex norm. 
(ii) X has an equivalent smooth norm. 
(iii) The norm of X is Gateaux differentiable at a dense subset of X. 
(iv) If K is a bounded closed convex subset of X then K is the closed 

convex hull of its exposed points. 

We pass to the proof of Theorem 1. I t is clearly enough to con­
sider only real spaces. Our first lemma holds for a general Banach 
space. 

LEMMA 1. Let X be a Banach space and let B be a finite-dimensional 
subspace of X. Let k be an integer and let e > 0. Then there is a finite-
dimensional subspace Z of X containing B such that for every subspace 
Y of X containing B with dim Y/B = k there is a linear operator 
T: Y-+Z with \\T\\ ^1+e and Tb = bfor every bEB. 
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