ON THE STABILITY OF DISCRETIZATIONS¹

MARTIN H. SCHULTZ

Communicated by Fritz John, April 13, 1966

This paper is concerned with a study of some aspects of the stability question for finite difference methods for the integration of a system of linear ordinary differential equations with constant coefficients. Such a system may be written as follows:

(1)
$$\frac{du(t)}{dt} = Mu(t), \quad t \ge 0,$$

$$u(0) = u_0,$$

where M is a given $n \times n$ complex matrix, $u(t) \in R_n$ for all $t \ge 0$, and u_0 is a given vector in R_n .

The discrete counterpart of the problem (1), (2) to be considered here is a one-parameter family of discretizations of the form

(3)
$$u_k(t+k) = S(k)u_k(t), \quad t \ge 0,$$

$$(4) u_k(0) = u_0$$

where k is a positive real parameter tending to 0, S(k) is an $n \times n$ complex matrix depending only on k, and $u_k(t) \in \mathbb{R}_n$ for all $t \ge 0$, k > 0.

DEFINITION 1. The one-parameter family of discretizations (3), (4) is said to be *consistent* with (1), (2) if and only if

(5) $\|(S(k) - I)/k - M\| \to 0$ as $k \to 0$ for any matrix norm.

Various types of stability are introduced in

DEFINITION 2. A one-parameter family of discretizations, $\{B(k)\}$, is said to be

(1) stable if and only if for any T > 0 there exist positive constants C and k_0 such that $||S^n(k)|| \leq C$ for all $0 < k < k_0$ and all positive integers n such that $nk \leq T$,

(2) strictly stable if and only if there exists positive constants k_0 and C such that $||S^n(k)|| \leq C$ for all $0 < k < k_0$ and all positive integers n. If k_0 is the largest such constant, then $(0, k_0]$ is called the *interval of strict stability*.

(3) completely strictly stable if and only if there exists a positive constant C(k) such that $||S^n(k)|| \leq C(k)$ for all k > 0 and all positive integers n.

(4) uniformly strictly stable if and only if there exists a positive constant C such that $||S^n(k)|| \leq C$ for all positive k and nonnegative integers n.

¹ This research was supported in part by NSF Grant GP-5553.