EXTENSIONS OF BRANDT SEMIGROUPS

BY R. J. WARNE

Communicated by O. G. Harrold, February 21, 1966

The purpose of this note is to announce the determination of all (ideal) extensions of a Brandt semigroup by an arbitrary semigroup with zero and to give two applications of this result. We use the terminology and notation of [1].

THEOREM. Let (V, \circ) be an extension of a Brandt semigroup S by an arbitrary semigroup T with zero, 0'. Let S be given the Rees representation $S = M^{\circ}(G; I, I; \Delta)$. Then there exists a partial homomorphism $w: A \rightarrow w_A$ of $T^* = (T \setminus 0')$ into g_I the full symmetric inverse semigroup on I. Let s_A and t_A denote the domain and range of w_A respectively. If AB = 0' (juxtaposition denoting multiplication in T) either $s_A \cap t_B = \Box$ or $s_A \cap t_B$ is a single element $d_{A,B}$. For each $A \in T^*$ there exists a mapping ψ_A of s_A into the group G such that for AB = 0'

$$(i\psi_A)(iw_A\psi_B) = i\psi_{AB}$$
 for all $i \in s_{AB}$.

The products in V are given by

(1) (a)
$$A \circ B = AB$$
 if $AB = 0'$ in T,
(b) $A \circ B = 0$ (in S) if $AB = 0'$ (in T) and $t_A \cap s_B = \Box$,
(c) $A \circ B = (d_{A,B}w_A^{-1}\psi_A)(d_{A,B}\psi_B); d_{A,B}w_A^{-1}, d_{A,B}w_B)$
if $AB = 0'$ (in T) and $t_A \cap s_B = d_{A,B}$.
(2) $(a; i, j) \circ A = \begin{cases} (a(j\psi_A); i, jw_A) & \text{if } j \in s_A, \\ 0 & \text{if } j \in s_A, \end{cases}$
 $0 \circ A = 0$
(3) $A \circ (a, i, j) = \begin{cases} ((iw_A^{-1}\psi_A)a; iw_A^{-1}, j) & \text{if } i \in t_A, \\ 0 & \text{if } i \in t_A, \end{cases}$
 $A \circ 0 = 0.$

Conversely let S be a Brandt semigroup and T be a semigroup with zero such that $S \cap T = \Box$. If we are given the mappings w and ψ_A described above and define product \circ in the class sum of S and T* by (1)-(3), then V is an extension of S by T.

REMARK. An extension of S by T always exists [1].