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This work is a continuation of [2], In [2] we studied the cohomol-
ogy groups Hq(X\A, 0) where A(QX) is a closed generalized poly-
disc. Here we consider the general case where A is the closure of a 
domain of holomorphy. This general case was treated in [l ] for g = 1, 
but the present method (for g ^ l ) is entirely different. 

We adopt the definition in [4] of analytic polyhedron. By an 
analytic polyhedron in general position we mean an analytic poly
hedron as defined in [3, p. 288]. 

THEOREM 1. Let A(ZCn be the closure of a bounded analytic poly
hedron in general position and let X be any open set in Cw, containing A. 
Then the restriction map 

(1) #*(X, 0) ^ H«(X\A, 0) (1 S q ^ n - 2) 

is bijective. 

We proceed as in [2] except that now we take G=*B\A where 
B={zED; /y(s)GAy for j = l, • • • , N} where A is defined by 
A= \zÇzD\/y(s)£Ay for j = l, • • • , N) where/y are holomorphic in 
£>, Ay is some open neighborhood of Ây, and B C D. (The argument in 
[2] can be simplified by dropping out the sets Uiv • • • , U%q which 
occur in the covering X\A.) All we need to prove is the following 
lemma. 

LEMMA. H*>(G, 0 )=O for l^p^n-2. 

PROOF. For simplicity we take Ay to be the unit disc and Ay to be 
a disc with radius 1 + e, homothetic to Ay. Clearly G = Uf^i Ui where 
Ui is defined as B except for the additional condition |/*(:s)| > 1 . 
Thus, each Z7* is also an analytic polyhedron. We next proceed 
analogously to [6, p. 349] and represent fi0...ip in U"=n*li 17»* as 
X)Ciif(/»v-»p) where M== {M\ M") is a set of indices j i , • • • , j n 

such that the integration in CMU) is taken over |/yx| ==71, • • • , |/yn| 
=yn where 7^ = 1 if jhÇzM" and 7^ = 1 + 6 if jhÇzM'; the above in
tegral representation is that given by the Cauchy-Weil formula [3], 
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