SOLVABILITY OF THE FIRST COUSIN PROBLEM AND VANISHING OF HIGHER COHOMOLOGY GROUPS FOR DOMAINS WHICH ARE NOT DOMAINS OF HOLOMORPHY. II

BY AVNER FRIEDMAN¹

Communicated by F. Browder, September 8, 1965

This work is a continuation of [2]. In [2] we studied the cohomology groups $H^q(X \setminus A, 0)$ where $A(\subset X)$ is a closed generalized polydisc. Here we consider the general case where A is the closure of a domain of holomorphy. This general case was treated in [1] for q=1, but the present method (for $q \ge 1$) is entirely different.

We adopt the definition in [4] of analytic polyhedron. By an analytic polyhedron in general position we mean an analytic polyhedron as defined in [3, p. 288].

THEOREM 1. Let $A \subset \mathbb{C}^n$ be the closure of a bounded analytic polyhedron in general position and let X be any open set in \mathbb{C}^n , containing A. Then the restriction map

(1) $H^q(X, \mathfrak{O}) \to H^q(X \setminus A, \mathfrak{O})$ $(1 \leq q \leq n-2)$

is bijective.

We proceed as in [2] except that now we take $G=B\setminus A$ where $B = \{z \in D; f_j(z) \in \Delta'_j \text{ for } j=1, \cdots, N\}$ where A is defined by $A = \{z \in D; f_j(z) \in \Delta_j \text{ for } j=1, \cdots, N\}$ where f_j are holomorphic in D, Δ'_j is some open neighborhood of $\overline{\Delta}_j$, and $\overline{B} \subset D$. (The argument in [2] can be simplified by dropping out the sets U_{i_1}, \cdots, U_{i_q} which occur in the covering $X \setminus A$.) All we need to prove is the following lemma.

LEMMA. $H^p(G, \mathfrak{O}) = 0$ for $1 \leq p \leq n-2$.

PROOF. For simplicity we take Δ_j to be the unit disc and Δ'_j to be a disc with radius $1 + \epsilon$, homothetic to Δ_j . Clearly $G = \bigcup_{i=1}^{N} U_i$ where U_i is defined as B except for the additional condition $|f_i(z)| > 1$. Thus, each U_i is also an analytic polyhedron. We next proceed analogously to [6, p. 349] and represent $f_{i_0\cdots i_p}$ in $U = \bigcap_{i=1}^{N} U_i$ as $\sum C_M(f_{i_0\cdots i_p})$ where $M = \{M', M''\}$ is a set of indices j_1, \cdots, j_n such that the integration in $C_M(f)$ is taken over $|f_{j_1}| = \gamma_1, \cdots, |f_{j_n}| = \gamma_n$ where $\gamma_h = 1$ if $j_h \in M''$ and $\gamma_h = 1 + \epsilon$ if $j_h \in M'$; the above integral representation is that given by the Cauchy-Weil formula [3],

¹ This work was partially supported by the Alfred P. Sloan Foundation and by Nasa Grant NGR 14-007-021.