SOLVABILITY OF THE FIRST COUSIN PROBLEM AND VANISHING OF HIGHER COHOMOLOGY GROUPS FOR DOMAINS WHICH ARE NOT DOMAINS OF HOLOMORPHY. II

BY AVNER FRIEDMAN ${ }^{1}$
Communicated by F. Browder, September 8, 1965

This work is a continuation of [2]. In [2] we studied the cohomology groups $H^{q}(X \backslash A, \mathcal{O})$ where $A(\subset X)$ is a closed generalized polydisc. Here we consider the general case where A is the closure of a domain of holomorphy. This general case was treated in [1] for $q=1$, but the present method (for $q \geqq 1$) is entirely different.

We adopt the definition in [4] of analytic polyhedron. By an analytic polyhedron in general position we mean an analytic polyhedron as defined in [3, p. 288].

Theorem 1. Let $A \subset \mathbf{C}^{n}$ be the closure of a bounded analytic polyhedron in general position and let X be any open set in \mathbf{C}^{n}, containing A. Then the restriction map

$$
\begin{equation*}
H^{q}(X, \mathcal{\theta}) \rightarrow H^{q}(X \backslash A, \mathcal{\theta}) \quad(1 \leqq q \leqq n-2) \tag{1}
\end{equation*}
$$

is bijective.
We proceed as in [2] except that now we take $G=B \backslash A$ where $B=\left\{z \in D ; f_{j}(z) \in \Delta_{j}^{\prime}\right.$ for $\left.j=1, \cdots, N\right\}$ where A is defined by $A=\left\{z \in D ; f_{j}(z) \in \Delta_{j}\right.$ for $\left.j=1, \cdots, N\right\}$ where f_{j} are holomorphic in D, Δ_{j}^{\prime} is some open neighborhood of $\bar{\Delta}_{j}$, and $\bar{B} \subset D$. (The argument in [2] can be simplified by dropping out the sets $U_{i_{1}}, \cdots, U_{i q}$ which occur in the covering $X \backslash A$.) All we need to prove is the following lemma.

Lemma. $H^{p}(G, \mathcal{O})=0$ for $1 \leqq p \leqq n-2$.
Proof. For simplicity we take Δ_{j} to be the unit disc and Δ_{j}^{\prime} to be a disc with radius $1+\epsilon$, homothetic to Δ_{j}. Clearly $G=U_{i=1}^{N} U_{i}$ where U_{i} is defined as B except for the additional condition $\left|f_{i}(z)\right|>1$. Thus, each U_{i} is also an analytic polyhedron. We next proceed analogously to [6, p. 349] and represent $f_{i_{0} \cdots i_{p}}$ in $U=\bigcap_{i=1}^{N} U_{i}$ as $\sum C_{M}\left(f_{i_{0}} \cdots i_{p}\right)$ where $M=\left\{M^{\prime}, M^{\prime \prime}\right\}$ is a set of indices j_{1}, \cdots, j_{n} such that the integration in $C_{M}(f)$ is taken over $\left|f_{j_{1}}\right|=\gamma_{1}, \cdots,\left|f_{j_{n}}\right|$ $=\gamma_{n}$ where $\gamma_{h}=1$ if $j_{h} \in M^{\prime \prime}$ and $\gamma_{h}=1+\epsilon$ if $j_{h} \in M^{\prime}$; the above integral representation is that given by the Cauchy-Weil formula [3],

[^0]
[^0]: ${ }^{1}$ This work was partially supported by the Alfred P. Sloan Foundation and by Nasa Grant NGR 14-007-021.

