APPROXIMATION OF BOUNDED FUNCTIONS BY CONTINUOUS FUNCTIONS

BY B. R. KRIPKE AND R. B. HOLMES

Communicated by V. Klee, June 15, 1965

We shall show that every bounded function on a paracompact space has a best approximation by continuous functions, and characterize the functions whose best approximators are unique. This is a special case of a measure-theoretic problem, whose setting is as follows. Let X be a topological space and μ a Borel measure on X which assigns positive mass to each nonempty open set, and has the property that $\mu(Y) = 0$ if Y intersects a neighborhood of each point in a μ -null set. The latter condition is automatically fulfilled if each open cover of X has a countable subcover. Let L^{∞} be the space of essentially bounded real-valued μ -measurable functions on X, and give it the semi-norm ||f|| = essential sup |f|. The bounded continuous functions on X form a closed subspace C of L^{∞} . We say that $g \in C$ is a best approximator to $f \in L^{\infty}$ if $||f-g|| = \text{dist}(f, C) = \inf\{||f-h|| : h \in C\}$.

If $f \in L^{\infty}$ and $x \in X$, $f^*(x) = \lim_{y \to x} \sup_{y \to x} f(y) = \inf_{x \to \infty} \{ess \text{ sup of } f \text{ over } U: U \text{ is a neighborhood of } x\}$; $f_* = \lim_{y \to x} \inf_{y \to x} f(y)$ has a similar definition. It is easy to verify that the functions f^* and f_* are defined everywhere, and are upper semi-continuous (usc) and lower semi-continuous (lsc) respectively.

PROPOSITION. If X is any topological space and $f \in L^{\infty}$, then $2 \operatorname{dist}(f, C) \ge d(f) = \sup \{f^*(y) - f_*(y) : y \in X\}.$

PROOF. If $f^*(x) - f_*(x) > d(f) - \epsilon$ and $g \in C$ then one or the other of $\limsup_{y \to x} (f(y) - g(y))$ and $\limsup_{y \to x} (g(y) - f(y))$ is greater than $\frac{1}{2}(d(f) - \epsilon)$.

THEOREM 1. If X is paracompact, then $g \in C$ is a best approximator to $f \in L^{\infty}$ if, and only if, $f^* - \frac{1}{2}d(f) \le g \le f_* + \frac{1}{2}d(f)$; every $f \in L^{\infty}$ has such a best approximator; and dist(f, C) = 1/2d(f).

PROOF. Since $f_* + \frac{1}{2}d(f) \ge f^* - \frac{1}{2}d(f)$, the first pair of inequalities is equivalent to the condition that for every $\epsilon > 0$ and every $x \in X$, there be a neighborhood U of x such that (ess $\sup |f(y) - g(y)| : y \in U$) $\le \frac{1}{2}d(f) + \epsilon$. This in turn is equivalent to the assertion that for every $\epsilon > 0$, $|f(y) - g(y)| > \frac{1}{2}d(f) + \epsilon$ only on a μ -null set, which says that $||f - g|| \le \frac{1}{2}d(f)$. It remains only to show that there is a continuous function which satisfies these inequalities. Since $f^* - \frac{1}{2}d(f)$