ON INFINITE INSEPARABLE EXTENSIONS OF EXPONENT ONE

BY MURRAY GERSTENHABER¹

Communicated by G. D. Mostow June 30, 1965

Let K be a field of characteristic $p \neq 0$ and Der K denote the vector space over K of all derivations of K. A classical theorem of Jacobson [2], strengthened by the author [1], asserts that the subfields L of K with $L \supset K^p$ and [L:K] finite are in natural one-one correspondence with the finite dimensional "restricted" subspaces of Der K, i.e., with those subspaces V such that $\dim_K V < \infty$ and such that $\phi \in V$ implies $\phi^p \in V$; the correspondence associates to L the space $\operatorname{Der}_L K$ of all derivations vanishing on L. (It follows that a finite dimensional restricted subspace is necessarily a Lie algebra.) The problem of extending this result after the fashion of Krull to fields $L \supset K^p$ with [K:L] possibly infinite has been raised explicitly (cf. [3, p. 191]) but not answered. The purpose of this note is to show that the obvious conjecture in fact holds.

1. The Krull topology and statement of the main theorem. Let Der K be topologized by taking as a base for the neighborhoods of zero those subspaces V of the form $\operatorname{Der}_L K$ with L a finite extension $K^p(x_1, \dots, x_n)$ of K^p ; this will be called the Krull topology. The closure of an arbitrary subspace V in the Krull topology will be denoted by \overline{V} . Given an arbitrary element ϕ of $\operatorname{Der} K$, the set of all $x \in K$ which are constants for ϕ , i.e., such that $\phi(x) = 0$, will be denoted K_{ϕ} . We shall further denote by D_{ϕ} the smallest restricted subspace of $\operatorname{Der} K$ containing ϕ , and by \overline{D}_{ϕ} its closure.

It is immediate that the closure of a restricted subspace is again restricted, and that a subspace of the form $\operatorname{Der}_L K$ is both closed and restricted.

THEOREM. Let K be a field of characteristic $p \neq 0$. Then the subfields L containing K^p are in natural one-one correspondence with the closed restricted subspaces of $\operatorname{Der} K$, the correspondence assigning to L the space $\operatorname{Der}_L K$. (It follows that a closed restricted subspace is in particular a Lie algebra.) Further, every closed restricted subspace is of the form \overline{D}_{Φ} for some Φ in $\operatorname{Der} K$.

2. Proof of the theorem. Before the proof we give several lemmas.

¹ The author wishes to acknowledge the support of the National Science Foundation under contract GP-3683.