ON THE THEORY OF RANDOM SEARCH

A. RÉNYI

Introduction. The problems of search dealt with in this paper can be described by the following simple model. Let S_{n} be a finite set having $n \geqq 2$ distinguishable elements-called points-and suppose that we want to find an unknown point x of the set S_{n}; the set S_{n} itself is supposed to be known to us. Let us suppose further that it is not possible to observe x directly, however we may choose some functions $f_{1}, f_{2}, \cdots, f_{N}$ from a given set F of functions defined on S_{n}, and observe the values $f_{1}(x), f_{2}(x), \cdots, f_{N}(x)$ taken on by these functions at the unknown point x. Of course if F would contain a function f which takes on different values at different points, a single observation of this function would be sufficient. We suppose however that all functions f belonging to the class F are such that the number of different values taken on by f is much smaller than n. (We shall be especially interested in the case when each $f \in F$ takes on only the two values 0 and 1 and n is a large number.) In such a case of course it is necessary to observe the value of a large number of functions f at the point x. Each such observation gives us only partial information on x (namely it specifies a subset A of S_{n} to which x must belong), but after making a fairly large number of such observations the information obtained accumulates and enables us to determine x. We want to find x by a not too large number of observations. We may e.g. suppose that each observation is connected with a certain cost (or that it requires a definite amount of time) and we want to keep the cost (or duration) of the whole procedure of search relatively low. We shall call a method for the successive choice of the functions f_{1}, \cdots, f_{N}, which leads in the end to the determination of the unknown x, a strategy of search. Obviously one usually tries to choose a strategy with N (the number of functions to be observed) as small as possible. Of two search procedures the one which has a smaller (average) duration is the better one, however there may be other requirements. For instance a simple strategy which can e.g. be easily programmed on a computer is usually preferable to a complicated strategy. If A and B are two strategies such that A requires (in the average) the observation of a somewhat smaller number of functions than B (i.e. A is "better" than B) but the effective carrying out of A

[^0]
[^0]: An elaboration of an address delivered before the Chicago meeting of the Society on April 25, 1964, by invitation of the Committee to Select Hour Speakers for Western Sectional Meetings; received by the editors June 18, 1965.

