DECISION METHODS IN THE THEORY OF ORDINALS¹

BY J. RICHARD BÜCHI

Communicated by D. Scott, May 21, 1965

For an ordinal α , let RS(α), the restricted second order theory of $[\alpha, <]$, be the interpreted formalism containing the first order theory of $[\alpha, <]$ and quantification on monadic predicate variables, ranging over all subsets of α . For a cardinal γ , RS(α, γ) is like RS(α), except that the predicate variables are now restricted to range over subsets of α of cardinality less than γ . $\omega = \omega_0$ and ω_1 denote the first two infinite cardinals. In this note I will outline results concerning RS(α, ω_0), which were obtained in the Spring of 1964 (detailed proofs will appear in [8]), and the corresponding stronger results about RS(α, ω_1), which were obtained in the Fall of 1964.

The binary expansion of natural numbers can be extended to ordinals. If $x < 2^{\alpha}$, let ϕx be the finite subset $\{u_1, \dots, u_n\}$ of α , given by $x = 2^{u_1} + \dots + 2^{u_n}$, $u_n < \dots < u_1$. ϕ is a one-to-one map of 2α onto all finite subsets of α . Let Exy stand for $(\exists u) [x = 2^u \land u \in \phi y]$, and note that the algorithm i+j=s, for addition in binary notation can be expressed in $RS(\alpha, \omega_0)$. It now is easy to see that the first order theory $FT[2^{\alpha}, +, E]$ is equivalent to $RS(\alpha, \omega_0)$, in the strong sense that the two theories merely differ in the choice of primitive notions; the binary expansion ϕ yields the translation. Similarly, $RS(\alpha, \gamma)$ can be reinterpreted as a first order theory. We will state our results in one of the two forms, and leave it to the reader to translate.

THEOREM 1. For any α , there is a decision method for truth of sentences in $RS(\alpha, \omega_0)$. The same sentences are true in $RS(\alpha, \omega_0)$ and $RS(\beta, \omega_0)$, if and only if, $\alpha = \beta < \omega^{\omega}$ or else $\alpha, \beta \ge \omega^{\omega}$ and have the same ω -tail.

If $\alpha = z + \omega^{y} + \omega^{n}c_{n} + \cdots + \omega^{0}c_{0}$, $y \ge \omega$, then $z + \omega^{y}$ is called the ω head of α , and $\omega^{n}c_{n} + \cdots + \omega^{0}c_{0}$ is called the ω -tail of α .

THEOREM 2. For any ordinals $\beta > \alpha > \omega^{\omega}$, $[2^{\beta}, +, E]$ is an elementary extension of $[2^{\alpha}, +, E]$, if and only if, α and β have the same ω -tail. The elementary embedding is then given by $h(2^{\alpha_0}x+y)=2^{\beta_0}x+y$, whereby $x < 2^{\tau}$, $y < 2^{\alpha_0}$, τ is the common ω -tail of α and β , α_0 and β_0 are respectively the ω -heads of α and β .

¹ This work was supported in part by grant GP-2754 from the National Science Foundation.