DECISION METHODS IN THE THEORY OF ORDINALS ${ }^{1}$

BY J. RICHARD BÜCHI
Communicated by D. Scott, May 21, 1965

For an ordinal α, let $\operatorname{RS}(\alpha)$, the restricted second order theory of $[\alpha,<]$, be the interpreted formalism containing the first order theory of $[\alpha,<]$ and quantification on monadic predicate variables, ranging over all subsets of α. For a cardinal $\gamma, \operatorname{RS}(\alpha, \gamma)$ is like $\operatorname{RS}(\alpha)$, except that the predicate variables are now restricted to range over subsets of α of cardinality less than $\gamma . \omega=\omega_{0}$ and ω_{1} denote the first two infinite cardinals. In this note I will outline results concerning $\operatorname{RS}\left(\alpha, \omega_{0}\right)$, which were obtained in the Spring of 1964 (detailed proofs will appear in [8]), and the corresponding stronger results about $\operatorname{RS}\left(\alpha, \omega_{1}\right)$, which were obtained in the Fall of 1964.

The binary expansion of natural numbers can be extended to ordinals. If $x<2^{\alpha}$, let ϕx be the finite subset $\left\{u_{1}, \cdots, u_{n}\right\}$ of α, given by $x=2^{u_{1}}+\cdots+2^{u_{n}}, u_{n}<\cdots<u_{1} . \phi$ is a one-to-one map of 2α onto all finite subsets of α. Let Exy stand for ($\exists u$) $\left[x=2^{u} \wedge u\right.$ $\in \phi y]$, and note that the algorithm $i+j=s$, for addition in binary notation can be expressed in $\operatorname{RS}\left(\alpha, \omega_{0}\right)$. It now is easy to see that the first order theory $\mathrm{FT}\left[2^{\alpha},+, E\right]$ is equivalent to $\operatorname{RS}\left(\alpha, \omega_{0}\right)$, in the strong sense that the two theories merely differ in the choice of primitive notions; the binary expansion ϕ yields the translation. Similarly, $\mathrm{RS}(\alpha, \gamma)$ can be reinterpreted as a first order theory. We will state our results in one of the two forms, and leave it to the reader to translate.

Theorem 1. For any α, there is a decision method for truth of sentences in $R S\left(\alpha, \omega_{0}\right)$. The same sentences are true in $R S\left(\alpha, \omega_{0}\right)$ and $R S\left(\beta, \omega_{0}\right)$, if and only if, $\alpha=\beta<\omega^{\omega}$ or else $\alpha, \beta \geqq \omega^{\omega}$ and have the same ω-tail.

If $\alpha=z+\omega^{y}+\omega^{n} c_{n}+\cdots+\omega^{0} c_{0}, y \geqq \omega$, then $z+\omega^{y}$ is called the ω head of α, and $\omega^{n} c_{n}+\cdots+\omega^{0} c_{0}$ is called the ω-tail of α.

Theorem 2. For any ordinals $\beta>\alpha>\omega^{\omega},\left[2^{\beta},+, E\right]$ is an elementary extension of $\left[2^{\alpha},+, E\right]$, if and only if, α and β have the same ω-tail. The elementary embedding is then given by $h\left(2^{\alpha 0} x+y\right)=2^{\beta_{0}} x+y$, whereby $x<2^{\tau}, y<2^{\alpha 0}, \tau$ is the common ω-tail of α and β, α_{0} and β_{0} are respectively the ω-heads of α and β.

[^0]
[^0]: ${ }^{1}$ This work was supported in part by grant GP-2754 from the National Science Foundation.

