A FACTORIZATION THEOREM FOR HOLOMORPHIC FUNCTIONS OF POLYNOMIAL GROWTH IN A HALF PLANE

BY E. J. BELTRAMI AND M. R. WOHLERS

Communicated by W. Rudin, April 12, 1965

A function F(p), $p = \sigma + i\omega$, belongs to class H^+ , if it is holomorphic in the half plane Re p > 0, and if it is bounded by a polynomial uniformly in every half plane Re $p \ge \sigma > 0$. The significance of the H^+ class is due to an important theorem of L. Schwartz [1]; this theorem tells us that H^+ characterizes the collection of Laplace transforms of certain distributions in D'_+ (here, as in what follows, we use the terminology and notation of distributions to be found in [2]). Moreover, H^+ is basic in the following extension of an L_2 result of Paley-Wiener.

THEOREM 1 [3]. A necessary and sufficient condition, in order that $F_{\omega} \in S'$ (tempered distribution) be the boundary value in the S' topology of an H⁺ function $F(\sigma+i\omega)$, as $\sigma \rightarrow 0$, is that F_{ω} be the Fourier transform of some $\hat{F} \in S' \cap D'_{+}$. In particular, F(p) is the Laplace transform of \hat{F} .

The classical version of Theorem 1 is obtained when S' is replaced by $L_2 \subset S'$ and H^+ is replaced by the Hardy class $H^2 \subset H^+$. Now a function which is of class H^2 , in the right half plane, also admits a factorization into inner and outer factors, as given by a well-known theorem (cf. [4, p. 67]). The inner factor is a.e. of modulus one on the boundary and can be written as the product of a singular function and a Blaschke product taken with the zeros of the H^2 function; the outer factor is nonzero and is itself in H^2 . Actually, H^2 is completely characterized by such a factorization.

The purpose of this note is to extend the classical result to the H^+ class by proving the following theorem.

THEOREM 2. $F(p) \in H^+$ can be factored as $F(p) = p^*B(p)S(p)g(p)$ (where k is some nonnegative integer, B(p) is a convergent Blaschke product formed with the zeros of F(p), S(p) is singular, g(p) is nonzero and in H^+ , and g(p) has a D'_{L_2} boundary value taken in the S' topology as $\sigma \rightarrow 0$), if and only if F(p) has S' boundary values as $\sigma \rightarrow 0$.

PROOF. Let $F(p) \in H^+$ tend to $F_{\omega} \in S'$ as $\sigma \to 0$. Then, for sufficiently large m, $F(p) = p^m f(p)$ and $f(p) \to {}^{S'} f_{\omega} \in D'_{L_2}$ (cf. [3]). Now let $f_n(\omega)$ be the regularizations of f_{ω} ; then the inverse Fourier transforms $\mathfrak{F}^{-1} f_n \equiv f_n \in L_2(0, \infty)$, since $f_n \in L_2$. Moreover (Paley-Wiener), the