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Many proofs have been given of the isoperimetric inequality for 
minimal surfaces of the type of the disc, which was discovered by 
T. Carleman [2] in 1921. The question, however, to find a similar 
inequality for minimal surfaces of higher topological type seems never 
to have been attacked in the literature. On the basis of new results 
[3], [4] such an estimate can be derived for multiply-connected 
minimal surfaces of planar type; and we want to state it here, and 
sketch the proof, for the case of a doubly-connected minimal surface, 
answering in part problems 25 and 26 formulated in [5]: 

Let S be a minimal surface of the type of the circular annulus of area 
A {finite or infinite), bounded by two distinct Jordan curves I \ and T2 

of lengths L\ and L2, respectively {finite or infinite). If these curves 
are rectifiable, then the area of S is finite, and the inequality (Li+L 2 ) 2 

—4 A > 0 is satisfied. 
The numerical value of the constant 4 can easily be improved. 

But the question for the best value of this constant—which un
doubtedly is 47T—must be left open. 

Consider a minimal surface S= {£ = £(w, v); {u, v)ÇEP}, where P 
is the closure of the ring domain P= {u, v; 0<r\<u2+v2<r\< 00 }. 
The vector %{u, v)(EC2{P)r\C0{P) satisfies in P the regularity condi
tion |£MX£*| > 0 , the condition of vanishing mean curvature H=0, 
and maps the bounding circles of P onto the curves I \ and T2 in a 
monotonie manner. 

The minimal surface has a conformai representation, i.e. a repre
sentation where, in addition to having the above properties, the vec
tor i{u, v) satisfies in P the relations ï£ = ïî, ?V£t> = 0, and maps the 
bounding circles of P topologically onto I \ and T2. We set w = u+iv 
= peid, and we shall use interchangeably the notations %{u> v) and 
ï(p, 6). Once the surface is given in a conformai representation the 
regularity condition ï^>0 is of no consequence. 

For ri<r<r2 let Y(r) be the circle \u, v; u2+v2 = r2}, T{r) its image 
on 5, and L{r) the length of T{r). Applying a device due to L. Bieber-
bach [ l ] and T. Radó [6] it is seen that L{r) ^Max(Li , L2). 

1 The preparation of this paper has been supported in part by Air Force Grant 
AF-AFOSR 883-65. 
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