ASYMPTOTIC VALUES OF HOLOMORPHIC FUNCTIONS OF IRREGULAR GROWTH

BY ALFRED GRAY AND S. M. SHAH ${ }^{1}$
Communicated by Maurice Heins, May 3, 1965

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be holomorphic with radius of convergence $R(0<R \leqq \infty)$, and let $\mu(r)$ denote the maximum term and $\nu(r)$ the central index of $f(z)$. By definition, for $r>0, \mu(r)=\max \left\{\left|a_{n}\right| r^{n} \mid n\right.$ $=0,1,2, \cdots\}$ and so $\mu(r)=\left|a_{\nu(r)}\right| r^{\nu(r)}$. We shall assume that $\mu(r) \rightarrow \infty$ as $r \rightarrow R$ and $f(z)$ is not a polynomial. In this note we give a technique for comparing $f(z)$ with its maximum term which shows that, for certain functions $f(z)$ which are of very slow growth, or whose power series have wide gaps, $f(z)$ has no finite asymptotic values. Our result is to be compared with Wiman's theorem [1, Chapter 3], [5]: If $f(z)$ is an entire function of order $\rho<\frac{1}{2}$ then $f(z)$ has no finite asymptotic values. However, the class of functions for which we show the nonexistence of finite asymptotic values is different from that of Wiman; in particular we allow the functions to have a finite radius of convergence.

Let $z=r e^{i \theta}$ and define

$$
\mu\left(r e^{i \theta}\right)=\mu(r) e^{i \nu(r) \theta}
$$

for $r>0$ and $0 \leqq \theta<2 \pi$. Then $\mu(z)$ is a complex extension of $\mu(r)$; it is piecewise continuous, but has discontinuities where $\nu(|z|)$ is discontinuous.

Let $\gamma(t)$ be a (continuous) receding curve such that $|\gamma(t)| \rightarrow R$ as $t \rightarrow \infty$. Then $\gamma(t)$ is an asymptotic path of $f(z)$ if as $t \rightarrow \infty, f(\gamma(t))$ tends to a limit ω, called an asymptotic value; analogously with this definition we shall call $\gamma(t)$ a μ-asymptotic path if $f(\gamma(t)) / \mu(\gamma(t))$ tends to a limit ω as $t \rightarrow \infty$, and we say that ω is a μ-asymptotic value. For example, e^{2} has μ-asymptotic value ∞ along the positive real axis, but has μ asymptotic value 0 along any path to ∞ in any angle which excludes the positive real axis. The following theorem is obvious, since $\mu(r)$ $\rightarrow \infty$.

Theorem 1. If $\gamma(t)$ is an asymptotic path of $f(z)$ with finite asymptotic value, then $\gamma(t)$ is a μ-asymptotic path of $f(z)$ with μ-asymptotic value 0.

Next we investigate some situations in which $f(z)$ has no μ-asymp-

[^0]
[^0]: ${ }^{1}$ The work of this author was supported by NSF grant GP-4311.

