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This work is a sequel to [ l ] : In [ l ] we considered the vanishing of 
the first cohomology groups with coefficients in 0, 0* for sets X\A 
whereas in the present work we consider the same question for higher 
cohomology; a t the same time we obtain some additional results for 
the first Cousin problem. As in [ l ] we take n^3. 

Scheja [3] proved that if X is an open set in Cn and A is an ana
lytic closed subset of X of dimension Sn — q — 2, then the natural 
homomorphism 

(1) H*(X,0)-*H*(X\A,0) 

is bijective. We shall prove: 

THEOREM 1. Let A be a closed bounded generalized poly disc in an open 
set X of CX Then the natural homomorphism (1) is bijective for any 
l^q^n-2. 

PROOF. Set A = LiX • • • XLn and let K = KXX • • • XKn be an 

open generalized polydisc with A C K C K C X. Set V = L2 X • • • 
XLn, K' = K2X • • • XKn, Go = (Xi \L 1 )XX / , ft=J5TiX(2i:'\L')i 
G — Go^JGi. By a straightforward generalization of [3, Hilfsatz] one 
gets Hq(G, 0)=O. We now introduce a covering U={Ui) of X\A 
where all the Ui are domains with Hq(Ui, 0) = 0 and precisely q + 1 
of them, say Z7»0, • • • , Uiq, coincide with G. By Leray's theorem [2], 
the canonical homomorphism 

(2) E*(N(U), 0) -» H*(X\A, 0) 

(where N(U) is the nerve of U) is bijective. 
We next introduce a covering U' — { U{ } of X where U^ = • • • 

= U'iq = KiXKf and Ui = Ui for all other indices i. Again, the canon
ical map 

(3) H*(N(Ur), 0) -> H«(X, 0) 
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