SOLVABILITY OF THE FIRST COUSIN PROBLEM AND VANISHING OF HIGHER COHOMOLOGY GROUPS FOR DOMAINS WHICH ARE NOT DOMAINS OF HOLOMORPHY¹

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

This work is a sequel to [1]: In [1] we considered the vanishing of the first cohomology groups with coefficients in 0, 0^* for sets $X \setminus A$ whereas in the present work we consider the same question for higher cohomology; at the same time we obtain some additional results for the first Cousin problem. As in [1] we take $n \ge 3$.

Scheja [3] proved that if X is an open set in \mathbb{C}^n and A is an analytic closed subset of X of dimension $\leq n-q-2$, then the natural homomorphism

(1)
$$H^q(X, \mathfrak{O}) \to H^q(X \setminus A, \mathfrak{O})$$

is bijective. We shall prove:

THEOREM 1. Let A be a closed bounded generalized polydisc in an open set X of C^n . Then the natural homomorphism (1) is bijective for any $1 \le q \le n-2$.

PROOF. Set $A = L_1 \times \cdots \times L_n$ and let $K = K_1 \times \cdots \times K_n$ be an open generalized polydisc with $A \subset K \subset \overline{K} \subset X$. Set $L' = L_2 \times \cdots \times L_n$, $K' = K_2 \times \cdots \times K_n$, $G_0 = (K_1 \setminus L_1) \times K'$, $G_1 = K_1 \times (K' \setminus L')$, $G = G_0 \cup G_1$. By a straightforward generalization of [3, Hilfsatz] one gets $H^q(G, 0) = 0$. We now introduce a covering $U = \{U_i\}$ of $X \setminus A$ where all the U_i are domains with $H^q(U_i, 0) = 0$ and precisely q+1of them, say U_{i_0}, \cdots, U_{i_q} , coincide with G. By Leray's theorem [2], the canonical homomorphism

(2)
$$H^q(N(U), \mathfrak{O}) \to H^q(X \setminus A, \mathfrak{O})$$

(where N(U) is the nerve of U) is bijective.

We next introduce a covering $U' = \{U'_i\}$ of X where $U'_{i_0} = \cdots = U'_{i_q} = K_1 \times K'$ and $U'_i = U_i$ for all other indices *i*. Again, the canonical map

(3)
$$H^q(N(U'), \mathfrak{O}) \to H^q(X, \mathfrak{O})$$

¹ This work was partially supported by the Alfred P. Sloan Foundation and by the NASA Grant NGR 14-007-021.