MODELS OF SPACE-TIME

BY W. F. EBERLEIN ${ }^{1}$
Communicated by M. Kac, May 17, 1965

1. Introduction. In [1] we exhibited electron spin as a nonrelativistic geometric property of (a model of) Euclidean 3-space. We now extend our model to one of space-time. The connections between 2 and 4 component spinors become lucid, while the Dirac equation and its relativistic "invariance" properties undergo a fundamental simplification and clarification.
2. Abstract space-time. We need first an axiomatic foundation strong enough to support both our mathematical considerations and their applications to physics.

Definition. An $n+1$ dimensional space-time ($n \geqq 1$) consists of
(A) An $n+1$ dimensional vector space V over the real numbers plus a symmetric bilinear real form $A \cdot B$ (inner product) such that:
(1) There exists a vector A with $A \cdot A<0$.
(2) Any 2-dimensional subspace of V contains a vector A with $A \cdot A>0$.
(B) A set χ of objects p, q, \cdots (points or "events") plus a mapping $(p, q) \rightarrow p-q$ of $\chi \times \chi$ into V such that:
(1) $(p-q)+(q-r)=p-r$.
(2) $p-q=0$ implies $p=q$.
(3) Given any point q and any vector A there exists a point p with $p-q=A$.

Any V satisfying (A) yields a model of space-time (vector spacetime) on setting $\chi=V$. The Minkowski model $V=\chi=R_{M}^{n+1}$ consists of all $n+1$-tuples of real numbers $x=\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)$ with $x \cdot y$ $=x_{1} y_{1}+\cdots+x_{n} y_{n}-x_{n+1} y_{n+1}$. (When $n=3, x_{4}=c t$, where t is time and c is the velocity of light.) Every $n+1$ dimensional vector spacetime is isomorphic to R_{M}^{n+1}, but this result is physically misleading. Eventually we set $n=3, \chi=$ the physical space-time continuum, and $V=\bigodot_{4}$, the spin model of (vector) space-time we shall construct.
3. The models \mathbb{E}_{3} and W_{4}. In [1] we defined the spin model ξ_{3} of Euclidean 3 -space as the vector space of self-adjoint linear transformations of trace 0 in a 2-dimensional unitary space H_{2} (spin space) plus the operations $A \cdot B=(1 / 2)(A B+B A)$ and $A \times B=(1 / 2 i)$

[^0]
[^0]: ${ }^{1}$ Work supported by National Science Foundation Grant NSF G-17774.

