MODELS OF SPACE-TIME

BY W. F. EBERLEIN¹

Communicated by M. Kac, May 17, 1965

1. Introduction. In [1] we exhibited electron spin as a nonrelativistic geometric property of (a model of) Euclidean 3-space. We now extend our model to one of space-time. The connections between 2 and 4 component spinors become lucid, while the Dirac equation and its relativistic "invariance" properties undergo a fundamental simplification and clarification.

2. Abstract space-time. We need first an axiomatic foundation strong enough to support both our mathematical considerations and their applications to physics.

DEFINITION. An n+1 dimensional space-time ($n \ge 1$) consists of

(A) An n+1 dimensional vector space V over the real numbers plus a symmetric bilinear real form $A \cdot B$ (inner product) such that:

(1) There exists a vector A with $A \cdot A < 0$.

(2) Any 2-dimensional subspace of V contains a vector A with $A \cdot A > 0$.

(B) A set χ of objects p, q, \cdots (points or "events") plus a mapping $(p, q) \rightarrow p - q$ of $\chi \times \chi$ into V such that:

(1) (p-q)+(q-r)=p-r.

(2) p-q=0 implies p=q.

(3) Given any point q and any vector A there exists a point p with p-q=A.

Any V satisfying (A) yields a model of space-time (vector spacetime) on setting $\chi = V$. The Minkowski model $V = \chi = R_M^{n+1}$ consists of all n+1-tuples of real numbers $x = (x_1, \dots, x_n, x_{n+1})$ with $x \cdot y$ $= x_1y_1 + \dots + x_ny_n - x_{n+1}y_{n+1}$. (When n = 3, $x_4 = ct$, where t is time and c is the velocity of light.) Every n+1 dimensional vector spacetime is isomorphic to R_M^{n+1} , but this result is physically misleading. Eventually we set n = 3, $\chi =$ the physical space-time continuum, and $V = \mathfrak{E}_4$, the spin model of (vector) space-time we shall construct.

3. The models \mathfrak{S}_3 and W_4 . In [1] we defined the spin model \mathfrak{S}_3 of Euclidean 3-space as the vector space of self-adjoint linear transformations of trace 0 in a 2-dimensional unitary space H_2 (spin space) plus the operations $A \cdot B = (1/2)(AB + BA)$ and $A \times B = (1/2i)$

¹ Work supported by National Science Foundation Grant NSF G-17774.