A COMBINATORIAL THEOREM FOR STOCHASTIC PROCESSES

BY LAJOS TAKÁCS¹

Communicated by J. L. Doob, January 21, 1965

Let $\{\chi(u), 0 \le u \le t\}$ be a stochastic process where t is a finite positive number. We associate a stochastic process $\{\chi^*(u), 0 \le u < \infty\}$ with $\{\chi(u), 0 \le u \le t\}$ as follows: $\chi^*(u) = \chi(u)$ for $0 \le u \le t$ and $\chi^*(t+u) = \chi^*(t) + \chi^*(u)$ for u > 0. If the finite dimensional distributions of $\{\chi^*(v+u) - \chi^*(v), 0 \le u \le t\}$ are independent of v for $v \ge 0$, then the process $\{\chi(u), 0 \le u \le t\}$ is said to have cyclically interchangeable increments. In particular, if $\{\chi(u), 0 \le u \le t\}$ has stationary, independent increments, and $P\{\chi(0) = 0\} = 1$, then it belongs to this class.

THEOREM. If $\{\chi(u), 0 \le u \le t\}$ is a separable stochastic process with cyclically interchangeable increments and if almost all sample functions are nondecreasing step functions which vanish at u = 0, then

$$P\{\chi(u) \leq u \text{ for } 0 \leq u \leq t \mid \chi(t)\}$$
(1)
$$=\begin{cases} \left(1 - \frac{\chi(t)}{t}\right) & \text{if } 0 \leq \chi(t) \leq t, \\ 0 & \text{otherwise,} \end{cases}$$

with probability 1.

PROOF. Let $\chi^*(u)$, $0 \le u < \infty$, be a nondecreasing step function (nonrandom) for which $\chi^*(0) = 0$ and $\chi^*(t+u) = \chi^*(t) + \chi^*(u)$ if u > 0 where t is a fixed positive number. For $u \ge 0$ define

(2)
$$\xi(u) = \begin{cases} 1 & \text{if } \chi^*(v) - \chi^*(u) \leq v - u \text{ for } v \geq u, \\ 0 & \text{otherwise.} \end{cases}$$

Obviously $\xi(u+t) = \xi(u)$ for all $u \ge 0$. Now we shall prove that

(3)
$$\int_0^t \xi(u) du = \begin{cases} t - \chi^*(t) & \text{if } 0 \leq \chi^*(t) \leq t, \\ 0 & \text{otherwise.} \end{cases}$$

The case $\chi^*(t) \ge t$ is obvious. Thus we suppose that $0 \le \chi^*(t) < t$. Define

¹ This research was sponsored by the Office of Naval Research under Contract Number Nonr-266(59).