# A COMBINATORIAL THEOREM FOR STOCHASTIC PROCESSES 

BY LAJOS TAKÁCS ${ }^{1}$

## Communicated by J. L. Doob, January 21, 1965

Let $\{\chi(u), 0 \leqq u \leqq t\}$ be a stochastic process where $t$ is a finite positive number. We associate a stochastic process $\left\{\chi^{*}(u), 0 \leqq u<\infty\right\}$ with $\{\chi(u), 0 \leqq u \leqq t\}$ as follows: $\chi^{*}(u)=\chi(u)$ for $0 \leqq u \leqq t$ and $\chi^{*}(t+u)=\chi^{*}(t)+\chi^{*}(u)$ for $u>0$. If the finite dimensional distributions of $\left\{\chi^{*}(v+u)-\chi^{*}(v), 0 \leqq u \leqq t\right\}$ are independent of $v$ for $v \geqq 0$, then the process $\{\chi(u), 0 \leqq u \leqq t\}$ is said to have cyclically interchangeable increments. In particular, if $\{\chi(u), 0 \leqq u \leqq t\}$ has stationary, independent increments, and $P\{\chi(0)=0\}=1$, then it belongs to this class.

Theorem. If $\{\chi(u), 0 \leqq u \leqq t\}$ is a separable stochastic process with cyclically interchangeable increments and if almost all sample functions are nondecreasing step functions which vanish at $u=0$, then

$$
P\{\chi(u) \leqq u \text { for } 0 \leqq u \leqq t \mid \chi(t)\}
$$

$$
=\left\{\begin{array}{cl}
\left(1-\frac{\chi(t)}{t}\right) & \text { if } 0 \leqq \chi(t) \leqq t  \tag{1}\\
0 & \text { otherwise },
\end{array}\right.
$$

with probability 1.
Proof. Let $\chi^{*}(u), 0 \leqq u<\infty$, be a nondecreasing step function (nonrandom) for which $\chi^{*}(0)=0$ and $\chi^{*}(t+u)=\chi^{*}(t)+\chi^{*}(u)$ if $u>0$ where $t$ is a fixed positive number. For $u \geqq 0$ define

$$
\xi(u)= \begin{cases}1 & \text { if } \chi^{*}(v)-\chi^{*}(u) \leqq v-u \text { for } v \geqq u,  \tag{2}\\ 0 & \text { otherwise. }\end{cases}
$$

Obviously $\xi(u+t)=\xi(u)$ for all $u \geqq 0$. Now we shall prove that

$$
\int_{0}^{t} \xi(u) d u=\left\{\begin{array}{cl}
t-\chi^{*}(t) & \text { if } 0 \leqq \chi^{*}(t) \leqq t  \tag{3}\\
0 & \text { otherwise }
\end{array}\right.
$$

The case $\chi^{*}(t) \geqq t$ is obvious. Thus we suppose that $0 \leqq \chi^{*}(t)<t$. Define

[^0]
[^0]:    ${ }^{1}$ This research was sponsored by the Office of Naval Research under Contract Number Nonr-266(59).

