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In this paper we show that if K and L are w-complexes, then K and 
L are isomorphic iff the 1-sections of the first derived complexes of 
K and L are isomorphic. This provides a low-dimensional method for 
establishing the isomorphism (homeomorphism) of complexes (poly-
hedra). 

Throughout, sp will denote a (rectilinear) ^-simplex with vertices 
a0, a1, • • • , av\ K will denote a (finite geometric) complex with n-
section Kn and first derived complex K''. The closed star of a vertex a 
of K, st(a), is the set of simplexes of K having a as a face and all their 
faces. For more details see [2]. 

DEFINITION 1. An w-complex K is full provided, for any subcom~ 
plex L of K which is isomorphic to 4» Z^P^n, L° spans a ^-simplex 
of K. 

THEOREM 1. Suppose K and L are full n-cornplexes. Then K and L 
are isomorphic iff Kl and L1 are isomorphic. 

PROOF. We need only consider the case when K1 and L1 are iso
morphic. Let v: K1-*!,1 be an admissible vertex transformation of 
K1 onto L1 with an admissible inverse. Then a0, a1 span a 1-simplex 
of K iff v(a°), v(ax) span a 1-simplex of L. Furthermore, for any p% 

2^p?j*n, if a0, a1, • • • , av span a ^-simplex sp of K, then v[sl] is 
isomorphic to 4« So, using the fullness of L, we get that (*>[4])° 


