# ON THE FACIAL STRUCTURE OF CONVEX POLYTOPES ${ }^{1}$ 

BY BRANKO GRÜNBAUM

Communicated by E. Dyer, January 7, 1965
A finite family $\boldsymbol{C}$ of convex polytopes in a Euclidean space shall be called a complex provided
(i) every face of a member of $\boldsymbol{C}$ is itself a member of $\boldsymbol{C}$;
(ii) the intersection of any two members of $\boldsymbol{C}$ is a face of both.

If $P$ is a $d$-polytope (i.e., a $d$-dimensional convex polytope) we shall denote by $B(P)$ the boundary complex of $P$, i.e., the complex consisting of all faces of $P$ having dimension $d-1$ or less. By $C(P)$ we shall denote the complex consisting of all the faces of $P$; thus $\boldsymbol{C}(P)=\boldsymbol{B}(P) \cup\{P\}$. For a complex $C$ we $\operatorname{define} \operatorname{set}(C)=U_{C \in C} C$. For an element $C$ of a complex $C$ the closed star [anti-star] of $C$ (in $C$ ) is the smallest subcomplex of $\boldsymbol{C}$ containing all the members of $\boldsymbol{C}$ which contain $C$ [do not meet $C$ ]. The linked complex of $C$ in $C$ is the intersection of the closed star of $C$ with the anti-star of $C$.

A complex $C$ is a refinement of a complex $K$ provided there exists a homeomorphism $\phi$ carrying $\operatorname{set}(C)$ onto $\operatorname{set}(K)$ such that for every $K \in K$ there exists a subcomplex $C_{K}$ of $C$ with $\phi^{-1}(K)=\operatorname{set}\left(C_{K}\right)$.

For example, the complex $K_{1}$ consisting of two triangles with a common edge is a refinement of the complex $K_{2}$ consisting of one triangle; note, however, that the 1 -skeleton of $K_{1}$ is not a refinement of the 1 -skeleton of $K_{2}$. Let $\Delta^{d}$ denote the $d$-simplex. The following result is simple but rather useful:

Theorem 1. For every d-polytope $P$ the complex $\mathbf{C}(P)$ is a refinement of $C\left(\Delta^{d}\right)$.

Proof. The assertion of the theorem is obviously equivalent to the following statement:

Theorem 1*. For every d-polytope $P$ the complex $B(P)$ is a refinement of $B\left(\Delta^{d}\right)$.

We shall prove the theorem in the second formulation, using induction on $d$. The case $d=1$ being trivial, we may assume $d \geqq 2$. Let $V$ be a vertex of $P$ and let $H$ be a ( $d-1$ )-plane intersecting (in relatively interior points) all the edges of $P$ incident to $V$. Then $P_{0}=P \cap H$ is a (d-1)-polytope, and, by the inductive assumption, $B\left(P_{0}\right)$ is a refinement of $B\left(\Delta^{d-1}\right)$. Let $S$ denote the closed star of $V$ in $B(P)$.

[^0]
[^0]:    ${ }^{1}$ The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research, OAR, under Grant AF EOAR 63-63 with the European Office of Aerospace Research, United States Air Force.

