SOLUTION OF LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS

BY J. F. TRAUB

Communicated by A. S. Householder, December 30, 1964

1. Introduction. The solution of an nth order inhomogeneous difference equation as an explicit function of the starting conditions (without using determinants) has been given by Traub [2], the proof based on a division algebra for sequences. In this note we prove two identities, (1) and (6), which may be used to provide a direct proof of the formulas, (13) and (14), for the solution of inhomogeneous difference or differential equations with constant coefficients. No transforms are required. These solutions are in a form which is felicitous for a number of applications.
2. Two identities. Let $P(t)$ be a monic polynomial

$$
P(t)=\sum_{j=0}^{n} a_{n-j} t^{j}, \quad a_{0}=1
$$

with complex coefficients and with distinct zeros $\rho_{1}, \rho_{2}, \cdots, \rho_{n}$. (The extension to the case of confluent zeros will be treated elsewhere.) Let λ be a nonnegative integer. Then

$$
\begin{equation*}
t^{\lambda}=P(t) \sum_{i=1}^{n} \frac{\rho_{i}^{\lambda}}{\left(t-\rho_{i}\right) P^{\prime}\left(\rho_{i}\right)}+P(t) \sum_{j=0}^{\lambda-1} t^{\lambda-1-j} \Omega(j), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega(j)=\sum_{i=1}^{n} \frac{\rho_{i}^{j}}{P^{\prime}\left(\rho_{i}\right)} . \tag{2}
\end{equation*}
$$

We remark that $\Omega(j)$, a symmetric polynomial in the ρ_{i}, may be obtained by translation from Wronski's aleph function [1],

$$
\omega(j)=\sum_{i=1}^{n} \frac{\rho_{i}^{n-1+j}}{P^{\prime}\left(\rho_{i}\right)}
$$

It is well known that

$$
\Omega(j)=\delta_{n-1, j}, \quad j=0,1, \cdots, n-1
$$

