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1. Introduction. The solution of an nth order inhomogeneous 
difference equation as an explicit function of the starting conditions 
(without using determinants) has been given by Traub [2], the proof 
based on a division algebra for sequences. In this note we prove two 
identities, (1) and (6), which may be used to provide a direct proof 
of the formulas, (13) and (14), for the solution of inhomogeneous 
difference or differential equations with constant coefficients. No 
transforms are required. These solutions are in a form which is 
felicitous for a number of applications. 

2. Two identities. Let P(f) be a monic polynomial 

n 

P(i) = Z W , 0o = l, 

with complex coefficients and with distinct zeros pi, p2, • • • , pn. (The 
extension to the case of confluent zeros will be treated elsewhere.) Let 
X be a nonnegative integer. Then 

(i) 'x = P(f) £ 7—
P-{—- + Pit) £ *-woo), 

i=i \f — pi)F (pi) /=() 

where 

We remark that £2(j)> a symmetric polynomial in the pit may be 
obtained by translation from Wronski's aleph function [ l ] , 

n-i+y 

It is well known that 

Q(j) = 8n-ij, j = 0, 1, • • • , n - 1. 
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