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1. Introduction. The solution of an #nth order inhomogeneous
difference equation as an explicit function of the starting conditions
(without using determinants) has been given by Traub [2], the proof
based on a division algebra for sequences. In this note we prove two
identities, (1) and (6), which may be used to provide a direct proof
of the formulas, (13) and (14), for the solution of inhomogeneous
difference or differential equations with constant coefficients. No
transforms are required. These solutions are in a form which is
felicitous for a number of applications.

2. Two identities. Let P(f) be a monic polynomial
P(t) = Z dn_jti, ay = 1,
7=0

with complex coefficients and with distinct zeros p1, p2, * * * , pa. (The
extension to the case of confluent zeros will be treated elsewhere.) Let
A\ be a nonnegative integer. Then
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We remark that Q(j), a symmetric polynomial in the p;, may be
obtained by translation from Wronski’s aleph function [1],
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It is well known that
Q(j)=6n—11f’ j=0’13"'7”_1-
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