A NEW INVARIANT OF HOMOTOPY TYPE AND SOME DIVERSE APPLICATIONS

BY DANIEL H. GOTTLIEB¹

Communicated by J. Milnor, December 14, 1964

Let X be a connected, locally finite simplicial polyhedron. Let $X^{\mathbf{x}}$ be the space of maps from X to X with the compact-open topology. Let $x_0 \in X$ be taken as a base point in X, then the evaluation map $p: X^{\mathbf{x}} \to X$ defined by $p(f) = f(x_0)$ for $f \in X^{\mathbf{x}}$ is continuous. Now p induces the homomorphism

 $p_*: \pi_1(X^X, 1_X) \to \pi_1(X, x_0),$

where $1_X \in X^X$ is the identity map. Hence $p_*\pi_1(X^X, 1_X)$ is a subgroup of the fundamental group of (X, x_0) .

PROPOSITION 1. $p_*\pi_1(X^x, \mathbf{1}_x)$ considered as a subgroup of $\pi_1(X, x_0)$ is an invariant of homotopy type.

In [2], this invariant is studied and theorems are obtained which bear on the study of $X^{\mathbf{x}}$, groups of homeomorphisms, homological group theory and knot theory. Most of these results come from the following theorem.

THEOREM 2. Let X have the homotopy type of a compact, connected polyhedron with nonzero Euler-Poincaré number. Then $p_*\pi_1(X^x, 1_x) = 0$.

The proof of this employs Nielsen-Wecken fixed-point class theory ([1] and [5]).

Let G(X) be the group of homeomorphisms of a manifold X, and let $G_0(X)$ be the isotropy group over x_0 . Then there is an exact sequence [3]

$$\cdots \to \pi_i(G_0(X), 1_X) \xrightarrow{i_*} \pi_i(G(X), 1_X) \xrightarrow{p_*'} \pi_i(X, x_0) \to \cdots,$$

where $p': G(X) \rightarrow X$ is the evaluation map.

COROLLARY 3. Let X be as in Theorem 2. Then $p_*'\pi_1(G(X), \mathbf{1}_X) = 0$. In particular, if $\pi_2(X, x_0) = 0$, then $i_*: \pi_1(G_0(X), \mathbf{1}_X) \cong \pi_1(G(X), \mathbf{1}_X)$.

This follows because $p_*' \pi_1(G(X), \mathbf{1}_X) \subseteq p_* \pi_1(X^X, \mathbf{1}_X)$.

¹ This work was partially supported by NSF Grant 1908.