RESEARCH PROBLEMS

4. R. A. Hirschfeld: Invariant subspaces.

E is a complex locally convex vector space, in which every closed bounded subset is complete. Let $T: E \rightarrow E$ be a linear continuous operator with nonempty spectrum, possessing a continuous inverse $T^{-1}: E \rightarrow E$.

Assume the family $(T^n)_{n=-\infty}^{\infty}$ to be equicontinuous.

Is it true that there is an invariant closed nontrivial linear subspace for T? (For a Banach space the answer is yes.) (Received December 4, 1964.)

5. R. A. Hirschfeld: Extension of nonlinear contractions.

E and *F* are Banach spaces, *F* reflexive, *D* is a subset of *E* and *T*: $D \rightarrow F$ a nonlinear contraction, i.e., $||Tx_1 - Tx_2||_F \leq ||x_1 - x_2||_E$ whenever $x_1, x_2 \in D$.

Can T be extended to a contraction $\tilde{T}: E \rightarrow F$? (For E = F = Hilbert space the answer is yes.) (Received December 4, 1964.)

6. Richard Bellman: Factorization of linear differential operators modulo p.

Let D represent the operator d/dx. Consider the factorization

$$D^{2} + a_{1}(x)D + a_{2}(x) = (D + b_{1}(x))(D + b_{2}(x)),$$

where a_1 , a_2 , b_1 , and b_2 are polynomials in x of degree less than p, a prime, and the equality is required to hold modulo p. What is the number of irreducible linear differential operators for the case where $a_1(x)$ and $a_2(x)$ are required, respectively, to have degrees m_1 and m_2 ? Generalize to the case of linear differential operators of the form $D^n + a_1(x)D^{n-1} + \cdots + a_n(x)$. (Received November 30, 1964.)

7. Richard Bellman: Functional differential equations.

Under what condition on the function $r(t) \ge 0$ can one assert that all solutions of u'(t) + au(t-r(t)) = 0 approach zero as $t \to \infty$?

Under what conditions do all solutions of $u'(t) = au(t-r(t)) = \sin bt$ approach $c \sin bt$ as $t \to \infty$?

If all solutions of u'(t) + au(t-r) = 0 approach zero as $t \to \infty$, and if $|r(t) - r| \le \epsilon$ for $t \ge 0$, do all solutions of $u'(t) + au(t - r(t)) \to 0$, as $t \to \infty$, for ϵ sufficiently small? (Received November 30, 1964.)