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The main result in this note, Theorem 2, can be thought of as a 
very strong maximum modulus type theorem. For example, let D 
be a bounded connected open set in C(0, 1), and l e t / : C\D—>Rn be 
continuous and differentiate in D. Then ƒ is determined by its values 
on the boundary of D. More exactly, ƒ(CLD)CCl/(d£>). More gen
erally, if F is any Banach space and ƒ : CID-+F is completely con
tinuous and differentiable in D, then ƒ(CLD) C CI/(dD). Note that 
these results are false if C(0, 1) is replaced by a Hubert space. 

THEOREM 1. Let D be a connected bounded open set in lp where p is 
not an even integer. Assume f is a real-valued function, continuous on 
C\D and n-times differentiable in D with n^p. Then f(CW) <ZClf(dD). 

This generalizes a result proved in 1954 by Kurzweil [ l ] . Kurzweil 
assumed that ƒ was w-times continuously differentiable, that D was 
a ball B(x0, r), and showed that inf {\f(x) — f(x0)\ : \\x — x0\\ =r} = 0. 

COROLLARY 1. Let f be an n-times differentiable function on lp, where 
n^p, and p is not an even integer. If f has its support in a bounded set, 
then ƒ is identically zero. 

In particular, it follows that, for n^p, Cn partitions of unity do 
not exist whenever p is not an even integer. This partially settles a 
question raised in Lang [2]. I t should be noted, however, that 
this is implied by Kurzweil's result. 

COROLLARY 2. Let E be a Banach space containing a subspace 
equivalent to I1. Assume D is a connected bounded open set in Ef and 
that ƒ is a real-valued function continuous on Q\D and differentiable 
inD. Thenf(CW)CC]f(dD). 

C(0, 1) and L1^, 1) are examples of spaces where Corollary 2 holds. 
More generally, any separable Banach space with an unconditional 
basis and nonseparable dual contains a subspace equivalent to ll. I t 
may be that any separable Banach space with a nonseparable dual 
has a subspace equivalent to I1. Corollary 2 generalizes an unpub
lished result of Edward Nelson who showed that, in C(0, 1), dif
ferentiable functions with bounded support are identically zero. 
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