DIFFERENTIABLE FUNCTIONS ON CERTAIN BANACH SPACES

BY ROBERT BONIC¹ AND JOHN FRAMPTON

Communicated by G. A. Hunt, October 21, 1964

The main result in this note, Theorem 2, can be thought of as a very strong maximum modulus type theorem. For example, let D be a bounded connected open set in C(0, 1), and let $f: ClD \rightarrow R^n$ be continuous and differentiable in D. Then f is determined by its values on the boundary of D. More exactly, $f(ClD) \subset Clf(\partial D)$. More generally, if F is any Banach space and $f: ClD \rightarrow F$ is completely continuous and differentiable in D, then $f(ClD) \subset Clf(\partial D)$. Note that these results are false if C(0, 1) is replaced by a Hilbert space.

THEOREM 1. Let D be a connected bounded open set in l^p where p is not an even integer. Assume f is a real-valued function, continuous on ClD and n-times differentiable in D with $n \ge p$. Then $f(ClD) \subset Clf(\partial D)$.

This generalizes a result proved in 1954 by Kurzweil [1]. Kurzweil assumed that f was *n*-times continuously differentiable, that D was a ball $B(x_0, r)$, and showed that $\inf \{ |f(x) - f(x_0)| : ||x - x_0|| = r \} = 0$.

COROLLARY 1. Let f be an n-times differentiable function on l^p , where $n \ge p$, and p is not an even integer. If f has its support in a bounded set, then f is identically zero.

In particular, it follows that, for $n \ge p$, C^n partitions of unity do not exist whenever p is not an even integer. This partially settles a question raised in Lang [2]. It should be noted, however, that this is implied by Kurzweil's result.

COROLLARY 2. Let E be a Banach space containing a subspace equivalent to l^1 . Assume D is a connected bounded open set in E, and that f is a real-valued function continuous on ClD and differentiable in D. Then $f(ClD) \subset Clf(\partial D)$.

C(0, 1) and $L^1(0, 1)$ are examples of spaces where Corollary 2 holds. More generally, any separable Banach space with an unconditional basis and nonseparable dual contains a subspace equivalent to l^1 . It may be that any separable Banach space with a nonseparable dual has a subspace equivalent to l^1 . Corollary 2 generalizes an unpublished result of Edward Nelson who showed that, in C(0, 1), differentiable functions with bounded support are identically zero.

¹ Research supported in part by NSF grant GP-1645.