MORSE THEORY FOR G-MANIFOLDS

BY ARTHUR WASSERMAN

Communicated by L. Zippin, October 20, 1964

Morse theory relates the topology of a Hilbert manifold [3, §9], M, to the behavior of a C^{∞} function $f: M \rightarrow R$ having only nondegenerate critical points. In applying Morse theory to the study of G-manifolds, i.e., manifolds with a compact Lie group G acting as a differentiable transformation group, one must, of course, use maps in the category, i.e., equivariant maps. However, if x is a critical point of an equivariant function then gx is also a critical point for any $g \in G$, hence one must allow critical orbits or, more generally, critical submanifolds.

In §1 we give the necessary definitions and notation. In §2 we extend the results of R. Palais in [3] to study an invariant C^{∞} function $f: M \rightarrow \mathbb{R}$ on a complete Riemannian G-space M, where in addition to f satisfying condition (C) [3, §10], we require that the critical locus of f be a union of nondegenerate critical manifolds in the sense of Bott [1]. In §3 we show that if M is finite-dimensional then any invariant C^{∞} function on M can be C^{k} approximated by a C^{∞} invariant function whose critical orbits are nondegenerate. Together with the results of §2 this provides an analogue for G-manifolds of the Smale handlebody decomposition technique. Proofs will be given elsewhere.

1. Notation and definition. G will denote a compact Lie group and M a C^{∞} Hilbert manifold. If $\psi: G \times M \rightarrow M$ is the differentiable action of G on M, then, for any $g \in G$, $\bar{g}: M \to M$ will denote the map given by $\bar{g}(m) = \psi(g, m)$; $\psi(g, m)$ will also be shortened to gm. If M, N are *G*-manifolds, then $f: M \rightarrow N$, is equivariant if $f \circ \overline{g} = \overline{g} \circ f$ for all $g \in G$; f is invariant if $f \circ \overline{g} = f$ for all $g \in G$. The tangent bundle T(M) of a G-manifold M is a G-manifold with the action $gX = d\bar{g}_p(X)$, for $X \in T(M)_p$. If E and B are G-manifolds and $\pi: E \to B$ is a Hilbert vector bundle [2], then π is said to be a G-vector bundle if, for each $g \in G, \bar{g}: E \rightarrow E$ is a bundle map. Note that π is then equivariant as is the zero-section. If, in addition, π has a Riemannian metric, \langle , \rangle , and each $g \in G$ acts isometrically, then π will be called a Riemannian G-vector bundle. M will be called a Riemannian G-space if $T(M) \rightarrow M$ is a Riemannian G-vector bundle. Let $f: M \rightarrow R$ be an invariant C^{∞} function. The gradient vector field, ∇f , on M, is defined by $\langle \nabla f, X \rangle$ $= df_p(X)$ for $X \in T(M)_p$ and, since f is invariant, $g \nabla f_p$, $\langle X \rangle = \langle \nabla f_p, g^{-1}X \rangle$ $= df_p(g^{-1}X) = d(f \circ \bar{g}^{-1})_{gp}(X) = df_{gp}(X) = \langle \nabla f_{gp}, X \rangle \text{ for all } X \in T(M)_{gp}$