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Let A be a densely defined linear operator in a Banach space X. 
Wolf [4] defines the essential spectrum of A as the complement of §>A, 
the set of those complex X for which A —X is closed and 

(a) a(A —X), the multiplicity of X, is finite, 
(b) R(A —X), the range of A —X, is closed, 
(c) (3(A — X), the codimension of R{A — X), is finite. 

This set, which we denote by <rew(A), has the desirable property of 
being invariant under arbitrary compact perturbations. The largest 
subset of the spectrum having this property will be denoted by <rem(A). 
I t is obtained by adding to <Tew(A) those points of $A for which 
i(A -X)=a(A -X) -${A -X) ^ 0 . 

Browder [2] has given a different definition. I t is equivalent to 
adding to <rem{A) those spectral points which are not isolated. We 
denote the essential spectrum according to this definition by <r^(A). 
I t has the advantage of excluding only isolated points of the spectrum, 
but is more delicate with respect to perturbations. 

In this paper we give sufficient conditions for the invariance of 
each of the sets aew(A), <Tem(A), <r€i(A) under perturbations. 

Let B be a linear operator in X with D(A)QD(B). I t is called 
^-bounded if ||j3*|| = cons t . (||x|| + | |4* | | ) for all xED(A). I t is called 
^4-compact if ||xn|| +||v4xn|| = const , for {xn}QD(A) implies that 
{iten} has a convergent subsequence. We shall call B A-closed if 
xn—»#, Axn—*y, Bxn—>z implies that xÇzD{B) and Bx — z. I t will be 
called A-closable if xn-^0t Axn—»0, Bxn—>z implies 2 = 0. 

THEOREM 1. If B is A-compact, then 

(1) <r„(A + B)Q *ew(A), 

(2) *em(A + B)Qaem(A). 

If, in addition j one of the following holds 
(a) A is closable, 
(b) B is (A+B)-closable, 
(c) B is A-closed, 

then 
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