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Eigenvalue problems for nonlinear equations have long been 
studied in the contexts of abstract function spaces and second-order 
ordinary differential equations. The present note treats such problems 
for certain quasi-linear elliptic partial differential equations by means 
of functional analysis on Sobolev spaces, and extends work in this 
direction by Levinson [7], Golomb [ó], Duff [5], and Vaïnberg [8]. 
The variational method used is a direct generalization of the linear 
case and thus allows the introduction of a simple Hilbert-space ap­
proach to this problem. 

1. Let G be a fixed bounded domain in real Euclidean iV-space RN 

with boundary G and closure G = GKJdG. A general point of G will 
be denoted x=(xi, X2, • • • , xn). Integration over G will always be 
taken with respect to Lebesgue iV-dimensional measure. All deriva­
tives are taken in the generalized sense of L. Schwartz. The following 
notation is very convenient: the elementary differential operators are 
written 
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and for any N-tuple of non-negative integers a = («i, a2, • • • , &N) the 
corresponding differential operator of order | a | =0:1+0:2+ • • • + « # 
is written Dct = DiiD%* • • • DN*N. A linear operator A of order 2m 
is said to be in divergence form if it can be written : 

Au=* £ Da(aa^x)iyu). 
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If aap(x) =apa(x)i A is also formally self-adjoint. 
A real linear differential operator A is uniformly elliptic in G if the 
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